
50 Esercizi di C++ V0.86Marcello Esposito

Copyright c©2006 Marcello Esposito. Permission is granted to copy, distri-bute and/or modify this document under the terms of the GNU Free Do-cumentation License, Version 1.2 or any later version published by the FreeSoftware Foundation; with no Invariant Sections, no Front-Cover Texts, andno Back-Cover Texts. A copy of the license is included in the section entitled"GNU Free Documentation License".

Indice
Prefazione 5I Esercizi 11EL Esercizi su liste 12EL.1 Lista Semplicemente Collegata 12EL.2 Somma Elementi . 13EL.3 Coda Pari . 13EL.4 Min e Max . 13EL.5 Lista Statica . 14EL.6 È Ordinata . 14EL.7 Elimina Tutti . 15EL.8 Elimina Ultimi . 15EL.9 Somma Coda . 15EL.10 Sposta Testa in Coda . 16EL.11 Elimina Pari e Dispari . 16EL.12 Lista Doppiamente Collegata 16EL.13 Ribalta . 18EA Esercizi su alberi binari 19EA.1 Albero Binario . 19EA.2 Numero Elementi . 20EA.3 Occorrenze . 20EA.4 Occorrenza Massima . 21EA.5 Profondità Limitata . 21EA.6 Somma . 22EA.7 Sostituisci . 22EA.8 Conta Min e Max . 22EA.9 Profondità Maggiore di Due 23EA.10 Profondita Maggiore Di . 231

INDICE 2EA.11 Profondità Massima . 23EA.12 Somma Livello . 24EA.13 Eliminazione Foglia . 24EA.14 Eliminazione Foglie . 24EA.15 Cerca Foglia . 25EA.16 Operatore di Confronto . 25EA.17 Conta Nodi non Foglia . 26EA.18 Conta Nodi . 26EA.19 Conta Nodi Sottoalbero . 26EP Esercizi su pile 28EP.1 Push Greater . 28EP.2 Push If . 29EC Esercizi su code 31EC.1 Coda . 31EC.2 Coda con Perdite . 32EC.3 Coda a Priorità . 33EC.4 PopMinMax . 34EX Altri esercizi 36EX.1 Accumulatore . 36EX.2 Cifratore . 36EX.3 Lista Della Spesa . 37EX.4 Predittore di Temperatura 38EX.5 Contenitore . 39EX.6 Lista Prenotazioni . 41EX.7 Classi�ca . 42EX.8 Agenzia Matrimoniale . 43EX.9 Parco Pattini . 45EX.10 Timer . 46EX.11 Timer Avanzato . 47EX.12 Votazioni . 48II Soluzioni 50SL Soluzioni degli esercizi su liste 51SL.1 Lista Semplicemente Collegata 51SL.2 Somma Elementi . 57SL.3 Coda Pari . 57

INDICE 3SL.4 Min e Max . 58SL.5 Lista Statica . 59SL.6 È Ordinata . 61SL.7 Elimina Tutti . 61SL.8 Elimina Ultimi . 62SL.9 Somma Coda . 63SL.10 Sposta Testa in Coda . 64SL.11 Elimina Pari e Dispari . 65SL.12 Lista Doppiamente Collegata 66SL.13 Ribalta . 69SA Soluzioni degli esercizi su alberi binari 73SA.1 Albero Binario . 73SA.2 Numero Elementi . 79SA.3 Occorrenze . 79SA.4 Occorrenza Massima . 80SA.5 Profondità Limitata . 81SA.6 Somma . 82SA.7 Sostituisci . 83SA.8 Conta Min e Max . 83SA.9 Profondità Maggiore di Due 84SA.10 Profondita Maggiore Di . 84SA.11 Profondità Massima . 85SA.12 Somma Livello . 85SA.13 Eliminazione Foglia . 86SA.14 Eliminazione Foglie . 86SA.15 Cerca Foglia . 87SA.16 Operatore di Confronto . 88SA.17 Conta Nodi non Foglia . 89SA.18 Conta Nodi . 89SA.19 Conta Nodi Sottoalbero . 90SP Soluzioni degli esercizi su pile 93SP.1 Push Greater . 93SP.2 Push If . 96SC Soluzioni degli esercizi su code 99SC.1 Coda . 99SC.2 Coda con Perdite . 103SC.3 Coda a Priorità . 107SC.4 PopMinMax . 112

INDICE 4SX Soluzioni degli altri esercizi 113SX.1 Accumulatore . 113SX.2 Cifratore . 114SX.3 Lista Della Spesa . 115SX.4 Predittore di Temperatura 119SX.5 Contenitore . 121SX.6 Lista Prenotazioni . 124SX.7 Classi�ca . 128SX.8 Agenzia Matrimoniale . 132SX.9 Parco Pattini . 136SX.10 Timer . 142SX.11 Timer Avanzato . 143SX.12 Votazioni . 145A GNU Free Documentation License 149A.1 Applicability and De�nitions 149A.2 Verbatim Copying . 151A.3 Copying in Quantity . 151A.4 Modi�cations . 152A.5 Combining Documents . 153A.6 Collection of Documents . 154A.7 Aggregation with Independent Works 154A.8 Translation . 154A.9 Termination . 154A.10 Future revisions of this license 155

PrefazioneGli esercizi presentati in questo eserciziario sono stati proposti a studenti diIngegneria delle Telecomunicazioni nell'ambito di un corso di Programmazio-ne I.Il corso aveva lo scopo di introdurre alla programmazione orientata aglioggetti utilizzando il linguaggio C++. Una rilevante parte del programmaa�rontava lo studio dei tipi di dati astratti, con particolare enfasi alle strut-ture dati di tipo contenitore, stressandone i concetti di incapsulamento edinterfaccia. Gli esercizi dedicati all'approfondimento di questi concetti sonostati raccolti in questo eserciziario, insieme con le relative soluzioni.A chi è rivolto questo testoGli studenti che approcciano allo studio del linguaggio C++, in occasionedi corsi di studi superiori, troveranno utile studiare e risolvere gli esercizicontenuti in questo testo. Se da un lato questi favoriscono l'acquisizione dellericorrenti tecniche legate alla realizzazione ed all'uso di contenitori, dall'altrorappresentano un pretesto per mettere in pratica approcci algoritmici allarisoluzione di problemi più generici.Non essendo questo un libro di teoria, lo studio di uno dei numerosi testidedicati alle nozioni della programmazione, alle regole ed alla sintassi dellinguaggio C++, risulta propedeutico. Il testo certamente più rappresenta-tivo è scritto dall'inventore del linguaggio, Bjarne Stroustrup [1]. Esistonocomunque numerosi altri testi orientati all'apprendimento del linguaggio, tracui [2, 3].La struttura degli eserciziQuesto eserciziario contiene di�erenti tipologie di esercizi: alcuni richiedonola realizzazione di una struttura dati di tipo contenitore, mediante uso delcostrutto class del linguaggio, fornendo allo studente la speci�ca in forma5

Prefazione 6di interfaccia dei classici metodi di cui tali strutture sono dotate (aggiunta diun elemento, conteggio degli elementi, svuotamento, visita, etc.). Altri eser-cizi, basandosi sulle suddette implementazioni, richiedono la realizzazione difunzionalità �nalizzate ad e�ettuare particolari elaborazioni sugli elementicontenuti (per esempio inserimenti o eliminazioni condizionate, somme, spo-stamenti, conteggi, etc.). In�ne, alcuni esercizi richiedono la realizzazionedi strutture dedicate a risolvere speci�ci problemi, e quindi prive dei classicirequisiti di generalità.Per ogni metodo da implementare, una traccia fornisce le seguenti infor-mazioni:
• il nome del metodo;
• l'insieme dei parametri di ingresso;
• l'insieme dei parametri di uscita;
• la descrizione della funzionalità che il metodo deve realizzare.Per esempio, la speci�ca di un ipotetico metodo di eliminazione di ele-menti da una lista, potrebbe apparire come segue.Nome Param. Ingr. Param. Usc.Elimina() TElem unsigned intElimina dalla struttura tutte le occorrenze dell'elemento speci�cato dalparametro di ingresso. Restituisce il numero delle eliminazioni e�ettuate.Nel caso in cui l'insieme dei parametri di ingresso e/o di uscita fossevuoto, si utilizzerà il simbolo �φ�. Talvolta può accadere che nella descrizionedel funzionamento del metodo non si prenda in considerazione la totalitàdei casi che possono veri�carsi (pre-condizioni), limitandosi a descrivere ilcomportamento del metodo nei casi d'uso più comuni. In questo caso, ilprogrammatore può scegliere arbitrariamente un comportamento per tutti icasi non esplicitamente considerati.Quando l'esercizio richiede la de�nizione di una struttura di tipo conte-nitore, spesso gli algoritmi da realizzare sono su�cientemente indipendentidal tipo degli elementi contenuti, e fanno riferimento solo ad alcune loro pro-prietà (relazione di ordinamento, uguaglianza e disuguaglianza tra elementi,etc.). Per questo motivo, nell'ambito di tali strutture, il tipo degli elementi èsistematicamente indicato con il generico identi�catore TElem, essendo la de-�nizione del tipo TElem centralizzata e localizzata in testa all'header �le del-la classe contenitore. Questa procedura anticipa l'uso della programmazione

Prefazione 7generica, che in C++ può essere praticata mediante il meccanismo dei tem-plates. Grazie alla tecnica suddetta, sarà semplice la eventuale conversionedelle classi così realizzate in classi template.Per quanto riguarda le strategie di gestione della memoria, la realizzazionedelle strutture dati può basarsi su un approccio di tipo statico (uso di vettoriallocati sullo stack) oppure dinamico (realizzazione di strutture concatenatecon puntatori ed allocate nell'heap mediante costrutto new). Questa scelta,in alcuni casi, è lasciata alla sensibilità dello studente.Alcune delle soluzioni presentate constano di un unico �le avente estensio-ne .cpp. In altri casi è stato presentato un approccio più modulare, medianteseparazione del codice su più �les (aventi estensioni .h e .cpp), enfatizzandoin misura ancora maggiore i diversi moduli di cui l'astrazione è di volta involta costituita.Per ognuno degli esercizi, oltre alla traccia, si fornisce la soluzione con-sistente nell'implementazione dei metodi conformi all'interfaccia speci�catadalla traccia. Nel caso in cui la traccia richieda di realizzare una strutturadati completa (e non solo i metodi basati su di essa), nella soluzione viene an-che fornito un modulo di test (di solito rappresentato dalla funzione main())utile esclusivamente al collaudo delle funzionalità della classe.Al �ne di preservare una maggiore generalità delle strutture dati realizza-te, un esplicito requisito comune a tutti gli esercizi consiste nel vietare l'usodei meccanismi di I/O nell'implementazione dei metodi della classe. La re-sponsabilità di prelevare i dati da tastiera e mostrare i risultati sulla consoleviene pertanto delegata al modulo di test. Un'unica deroga a questa regola èrelativa al metodo di visita delle strutture (di solito contrassegnato dal nomeStampa()): il concetto di iteratore, utile ad astrarre l'attraversamento di unastruttura contenitore, non è di solito noto agli studenti di un corso di base.Il lettore interessato può fare riferimento alla Standard Template Library(STL) [4], peraltro di notevole utilità in reali contesti di sviluppo software.Per le operazioni di I/O si utilizzano le funzionalità messe a disposizione dallalibreria standard iostream, ed in particolare dai suoi oggetti cin e cout.Spesso nelle tracce non è richiesta l'implementazione di un costruttoredi copia oppure di un operatore di assegnazione. Questi due metodi rien-trano tra quelli che, se non de�niti in una classe, vengono automaticamentesintetizzati dal compilatore e, se invocati dall'utente, producono una copiasuper�ciale dell'oggetto (shallow-copy). Se questo comportamento è scorret-to � o comunque indesiderato � è possibile rendere del tutto indisponibilile funzionalità di copia o assegnazione tra oggetti della classe. Ciò si ottienedichiarando nella sezione private della classe i due metodi in questione enon fornendone alcuna implementazione [5]. Così facendo, qualsiasi costrut-to che �nisca per invocare uno di questi due metodi produrrà un errore di

Prefazione 8compilazione. Tale tecnica viene spesso utilizzata nelle soluzioni degli esercizipresentati.Compilare i sorgentiTutti i sorgenti presentati sono stati compilati con la versione 3.3.1 del-la suite di compilazione GNU/GCC [6], utilizzando le seguenti opzioni dicompilazione:-Wall �ansi �pedanticL'opzione -Wall richiede al compilatore di non inibire la maggior partedei messaggi di warning che, pur non compromettendo la corretta compila-zione del programma, sono sintomi di imprecisioni all'interno del codice. Lealtre due opzioni inducono il compilatore ad accettare esclusivamente codicestrettamente aderente allo standard ISO-C++ [7], ri�utando la compilazionedi eventuali estensioni non standard del linguaggio.Il codice sorgente delle soluzioni è stato scritto utilizzando l'ambientedi sviluppo Dev-C++ [8], nella sua versione 4.9.9.0, utilizzabile su sistemioperativi della famiglia MicrosoftTM Windows. Tale software consiste di uneditor gra�co che funge da interfaccia per le operazioni di stesura, compilazio-ne e debugging del codice sorgente, oltre a fornire ed installare anche la suitedi compilazione GNU/GCC. In ogni caso, purché si disponga di un compila-tore conforme allo standard ISO-C++, qualsiasi altro ambiente di sviluppo,o anche un semplice editor di testi, possono essere considerati validi ai �nidella stesura del codice sorgente.Uno sguardo al futuroQuelli che alla �ne di questo eserciziario penseranno: �Sì, e allora?�, proba-bilmente sono pronti per a�rontare uno studio più approfondito della pro-grammazione, che non si esaurisce con il possesso delle nozioni su un lin-guaggio. Tra un individuo che conosca un linguaggio di programmazione edun programmatore esperto c'è un di�erenza analoga a quella che esiste traun individuo che sappia scrivere ed uno scrittore. Un buon programmatorenon è quello che sa a�rontare la complessità, ma quello che sa dominar-la. Certamente la conoscenza della sintassi del linguaggio è un primo passoindispensabile, ma chi vuole approfondire questa materia non può fare a me-no di acquisire le nozioni della progettazione, le buone prassi per la stesuradel codice e gli strumenti forniti dalle librerie standard oggi disponibili. È

Prefazione 9solo attraverso questa strada che diviene possibile scrivere applicazioni nonbanali, preservandone le caratteristiche di comprensibilità, estensibilità, ma-nutenibilità, correttezza e, in una sola parola, di qualità. Programmare uti-lizzando l'incapsulamento, il polimor�smo, i meccanismi delle eccezioni, delleasserzioni, dei templates, le numerose librerie più o meno standard, signi�cadisporre di strumenti semanticamente molto potenti, oltre che ben consolida-ti; signi�ca delegare al compilatore lo svolgimento di una serie di operazionie di controlli che, in alternativa, peserebbero sulle spalle del programmatore,oppure non verrebbero messi in essere a�atto.Si pensi ad esempio al seguente semplice problema: si vuole realizzare un programmaC++ che, data una stringa di testo comunque lunga, calcoli l'occorrenza delle parolecontenute in essa. Utilizzando esclusivamente i costrutti messi a disposizione dal linguaggiosarebbe necessario procedere secondo i seguenti passi:1. progettazione di una struttura dati capace di contenere sequenze di caratteri co-munque lunghe;2. progettazione di una struttura ad accesso tabellare capace di contenere coppie deltipo (stringa, intero);3. progettazione di un algoritmo che analizzi la stringa, la scomponga nelle singoleparole componenti e popoli coerentemente la struttura tabellare.Utilizzando invece quanto messo a disposizione dalla libreria STL [4], il programmasuddetto apparirebbe come segue:int main () {s t r i n g buf ;map<st r ing , int> m;while (c in >> buf)m[buf]++;}Una volta che la STL sia stata acquisita, i vantaggi di un tale approccio risultanoevidenti relativamente agli aspetti di (i) tempo di stesura; (ii) correttezza del codice; (iii)individuazione degli errori; (iv) comprensibilità; (v) manutenibilità; (vi) estensibilità; (vii)aderenza agli standard.Nell'apprendere le nozioni della progettazione e le buone prassi per lastesura del codice, ascoltare cosa hanno da dirci `i giganti' al proposito, puòservire molto. A questo scopo non si può fare a meno di citare dei testidisponibili in letteratura, universalmente considerati dei classici.Design Patterns [9] è probabilmente il più bel testo mai scritto nell'ambitodella progettazione software, considerando anche le profonde ripercussioniche esso ha poi avuto sul concetto di buona progettazione software orientataagli oggetti, tanto da essere ancora oggi il libro di gran lunga più citatonel suo genere. In questo testo gli autori introducono il concetto di pattern

Prefazione 10progettuale software (design pattern); ad un livello di astrazione superiore aquello di qualsiasi linguaggio di programmazione, presentano poi 55 soluzionia problemi comuni nell'ambito della progettazione, con esempi in linguaggioC++. Imperdibile.In programmazione un problema può essere spesso risolto seguendo un no-tevole numero di di�erenti strade, ognuna delle quali assoggetta il program-matore ad accettare determinati compromessi. I due libri E�ective C++ [5]e More E�ective C++ [10] contengono una collezione di linee guida utili acomprendere cosa fare � e cosa non fare � con il linguaggio C++. Una nu-trita schiera di programmatori ha assimilato da questi due testi un correttostile di programmazione, ed ha imparato ad evitare i ricorrenti trabocchettiin agguato durante le fasi di stesura di codice in linguaggio C++. Il successodi questi testi è tale che oggi il compilatore GNU/GCC è dotato di un'opzio-ne di compilazione che produce dei warnings in caso di violazione delle lineeguida contenute in E�ective C++1.Chi voglia realmente approfondire la propria conoscenza del C++, nonpuò fare a meno di assimilare le tecniche di programmazione basate sul mecca-nismo dei template e della programmazione generica (generic programming).Modern C++ Design [11] è particolarmente illuminante sotto questo punto divista. Il libro apre le porte ad un utilizzo estremamente elegante dei template,inimmaginato per�no da chi li aveva originariamente progettati. Seguendo lasua impostazione nella stesura del software e le sue linee guida si perviene alprogetto di architetture software limpide e snelle, ma contemporaneamenteestremamente potenti e versatili.Dove trovare questo eserciziarioQuesto eserciziario è distribuito sotto licenza GNU Free Documentation Li-cense (vedi Appendice A) all'indirizzo http://esercizicpp.sourceforge.net. Dal sito è possibile prelevare l'ultima versione disponibile, accedere aiforum dedicati ai lettori ed iscriversi alla mailing-list informativa.Contattare l'autoreCommenti, suggerimenti e segnalazioni sono graditi. L'autore può esserecontattato al seguente indirizzo e-mail: mesposit@unina.it1L'opzione è: -Weffc++.

Parte IEsercizi

11

Capitolo ELEsercizi su liste
EL.1 Lista Semplicemente CollegataSoluzione a pag. 51Si realizzi la struttura dati Lista. Il tipo TElem degli elementi contenuti siauguale al tipo int del linguaggio. La lista sia dotata dei metodi riportati diseguito.Nome Param. Ingr. Param. Usc.Lista() φ φCostruttore senza parametri.Lista() Lista φCostruttore di copia.�Lista() φ φDistruttore.Inserisci() TElem φInserimento in testa alla lista.NumeroElementi() φ intRestituisce il numero degli elementi contenuti nella lista.Svuota() φ φSvuota la lista.Elimina() TElem φElimina un elemento dalla lista, se presente.12

EL. Esercizi su liste 13Stampa() φ φStampa sullo standard output tutti gli elementi contenuti nella lista.Ricerca() TElem boolPredicato indicante la presenta di un elemento.L'unico metodo della classe Lista che può utilizzare lo standard-output(cout) è il metodo Stampa(). Gli altri metodi (pubblici, privati o protetti)non possono fare uso delle funzionalità di stampa.Si realizzi una funzione main() che permetta di e�ettuare il collaudo dellastruttura dati realizzata.EL.2 Somma Elementi Soluzione a pag. 57Dotare la classe Lista (vedi �EL.1) del metodo Somma() secondo la seguentespeci�ca.Nome Param. Ingr. Param. Usc.Somma() φ TElemRestituisce la somma degli elementi presenti nella lista.EL.3 Coda Pari Soluzione a pag. 57Dotare la classe Lista (vedi �EL.1) del metodo CodaPari(), secondo laseguente interfaccia.Nome Param. Ingr. Param. Usc.CodaPari() φ boolRestituisce true se l'elemento in coda è pari, false altrimenti.EL.4 Min e Max Soluzione a pag. 58Dotare la classe Lista (vedi �EL.1) del metodo MinMax() secondo la seguentespeci�ca.

EL. Esercizi su liste 14Nome Param. Ingr. Param. Usc.MinMax() φ TElem,TElemRestituisce gli elementi minimo e massimo all'interno della lista. Incaso di lista vuota l'uscita di questo metodo è non speci�cata.EL.5 Lista Statica Soluzione a pag. 59Si realizzi la struttura dati Lista secondo un approccio all'allocazione dellamemoria di tipo statico. Il tipo TElem degli elementi contenuti sia uguale altipo int del linguaggio. La lista sia dotata dei metodi riportati di seguito.Nome Param. Ingr. Param. Usc.Lista() φ φCostruttore.�Lista() φ φDistruttore.InserisciInCoda() TElem φInserisce un elemento in coda alla lista.Svuota() φ φSvuota la lista.Count() φ φRestituisce il numero degli elementi contenuti nella lista.Stampa() φ φStampa sullo standard output tutti gli elementi contenuti nella lista.L'unico metodo della classe Lista che può utilizzare lo standard-output(cout) è il metodo Stampa(). Gli altri metodi (pubblici, privati o protetti)non possono fare uso delle funzionalità di stampa.EL.6 È Ordinata Soluzione a pag. 61Dotare la classe Lista (vedi �EL.5) del metodo EOrdinata(), secondo laseguente interfaccia.

EL. Esercizi su liste 15Nome Param. Ingr. Param. Usc.EOrdinata() φ boolRestituisce true se la lista è ordinata secondo la relazione diordinamento crescente per gli interi, false altrimenti.EL.7 Elimina Tutti Soluzione a pag. 61Dotare la classe Lista (vedi �EL.5) del metodo EliminaTutti(), secondo laseguente interfaccia.Nome Param. Ingr. Param. Usc.EliminaTutti() TElem intElimina tutte le occorrenze dell'elemento speci�cato presenti nellalista. Restituisce il numero di occorrenze eliminate.EL.8 Elimina Ultimi Soluzione a pag. 62Dotare la classe Lista (vedi �EL.1) dei metodi le cui interfacce sono riportatedi seguito.Nome Param. Ingr. Param. Usc.EliminaUltimi() unsigned int unsigned intElimina dalla lista gli ultimi n elementi, con n pari al valore delparametro di ingresso. Il valore restituito è pari al numero di elementie�ettivamente eliminati dalla lista.LasciaPrimi() unsigned int unsigned intElimina dalla lista tutti gli elementi tranne i primi n, con n pari alvalore del parametro di ingresso. Il valore restituito è pari al numerodi elementi e�ettivamente eliminati dalla lista.EL.9 Somma Coda Soluzione a pag. 63Dotare la classe Lista (vedi �EL.1) del metodo SommaCoda(), secondo laseguente interfaccia.

EL. Esercizi su liste 16Nome Param. Ingr. Param. Usc.SommaCoda() φ φSomma a tutti gli elementi della lista il valore dell'elemento di coda.EL.10 Sposta Testa in Coda Soluzione a pag. 64Dotare la classe Lista (vedi �EL.1) del metodo SpostaTestaInCoda(), se-condo la seguente interfaccia.Nome Param. Ingr. Param. Usc.SpostaTestaInCoda() φ boolSposta in coda alla lista l'elemento di testa. Il metodo restituiscetrue se lo spostamento è e�ettuato, false altrimenti.EL.11 Elimina Pari e Dispari Soluzione a pag. 65Dotare la classe Lista (vedi �EL.1) dei metodi EliminaElPostoPari() edEliminaElPostoDispari(), secondo la seguente interfaccia.Nome Param. Ingr. Param. Usc.EliminaElPostoPari() φ unsigned intElimina dalla lista tutti gli elementi di posto pari (0, 2, 4, ...).Restituisce il numero di elementi eliminati.EliminaElPostoDispari() φ unsigned intElimina dalla lista tutti gli elementi di posto dispari (1, 3, 5, ...).Restituisce il numero di elementi eliminati.EL.12 Lista Doppiamente CollegataSoluzione a pag. 66Si realizzi in linguaggio C++ il tipo di dato astratto Lista mediante uso delcostrutto class del linguaggio. L'implementazione deve essere realizzata me-diante puntatori ed allocazione dinamica della memoria secondo l'approccio

EL. Esercizi su liste 17
el el el

first lastFigura EL.1: Struttura della lista doppiamente collegatadi lista doppiamente collegata. Ogni elemento, cioè, punta contemporanea-mente al precedente ed al successivo (vedi Figura EL.1). Gli elementi dellalista siano di tipo TElem uguale al tipo int.Di seguito è riportata la speci�ca dei metodi pubblici da implementareper la classe Lista.Nome Param. Ingr. Param. Usc.Lista() φ φCostruttore.�Lista() φ φDistruttore.Inserisci() TElem φInserisce un elemento in coda alla lista.Svuota() φ φSvuota la lista.Count() φ unsigned intConta gli elementi contenuti nella lista.StampaDiretta() φ φStampa il contenuto della lista sullo standard output, dall'elementodi testa all'elemento di coda.StampaInversa() φ φStampa il contenuto della lista sullo standard output, dall'elementodi coda all'elemento di testa.StampaAlternata() φ φStampa il contenuto della lista nel seguente ordine: primo elemen-to, ultimo elemento, secondo elemento, penultimo elemento, terzoelemento, terzultimo elemento...

EL. Esercizi su liste 18Gli unici metodi della classe Lista che possono utilizzare lo standard-output (cout) sono i metodi di stampa. Gli altri metodi (pubblici, privati oprotetti) non possono fare uso degli oggetti per l'I/O.Si realizzi una funzione main() che permetta di e�ettuare il collaudo dellastruttura dati realizzata.EL.13 Ribalta Soluzione a pag. 69Dotare la classe Lista (vedi �EL.1) del metodo Ribalta() secondo la se-guente speci�ca.Nome Param. Ingr. Param. Usc.Ribalta() φ φRibalta la posizione di tutti gli elementi della lista. Alla chiamata ditale metodo il primo elemento diventa l'ultimo, il secondo diventa ilpenultimo. . . l'ultimo diventa il primo.

Capitolo EAEsercizi su alberi binari
EA.1 Albero Binario Soluzione a pag. 73Realizzare la classe AlberoBinario. Il tipo TElem dei suoi elementi sia iltipo int e gli elementi risultino ordinati secondo la relazione di ordinamentocrescente per gli interi. L'implementazione di tutti i metodi sia basata suappositi metodi ricorsivi. L'interfaccia della classe sia la seguente.Nome Param. Ingr. Param. Usc.AlberoBinario() φ φCostruttore della struttura.AlberoBinario() AlberoBinario φCostruttore di copia.�AlberoBinario() φ φDistruttore della struttura.AggiungiElem() TElem φMetodo di aggiunta di un elemento all'albero.InAlb() TElem boolRicerca un elemento nell'albero. Restituisce true nel caso in cuil'elemento speci�cato sia presente nell'albero, false altrimenti.Elimina() TElem φElimina l'elemento speci�cato dall'albero.Svuota() φ φSvuota la struttura. 19

EA. Esercizi su alberi binari 20PreOrdine() φ φE�ettua una visita in pre-ordine dell'albero, stampando tutti glielementi sullo standard output.PostOrdine() φ φE�ettua una visita in post-ordine dell'albero, stampando tutti glielementi sullo standard output.InOrdine() φ φE�ettua una visita in ordine dell'albero, stampando tutti gli elementisullo standard output.Gli unici metodi della classe AlberoBinario che possono utilizzare lostandard-output (cout) sono i metodi di visita dell'albero (InOrdine(),PreOrdine(), PostOrdine()). Gli altri metodi (pubblici, privati o protetti)non possono fare uso delle funzionalità di stampa.Si realizzi una funzione main() che permetta di e�ettuare il collaudo dellastruttura dati realizzata.EA.2 Numero Elementi Soluzione a pag. 79Dotare la classe AlberoBinario (vedi �EA.1) del metodo NumElem() secondola seguente speci�ca.Nome Param. Ingr. Param. Usc.NumElem() φ unsigned intRestituisce il numero degli elementi presenti nell'albero.EA.3 Occorrenze Soluzione a pag. 79Dotare la classe AlberoBinario (vedi �EA.1) del metodo Occorrenze(),secondo la seguente interfaccia.Nome Param. Ingr. Param. Usc.Occorrenze() TElem unsigned intRestituisce le occorrenze dell'elemento speci�cato nell'albero.

EA. Esercizi su alberi binari 21EA.4 Occorrenza Massima Soluzione a pag. 80Modi�care la classe AlberoBinario (vedi �EA.1) per prevedere un'occorren-za massima degli elementi in esso inseriti. Più precisamente, il costruttoredeve accettare come parametro di ingresso un numero intero positivo (per es.maxocc); l'inserimento di un nuovo elemento nell'albero deve andare a buon�ne solo se tale elemento è presente con occorrenza minore di maxocc.Di seguito è riportata la speci�ca dei due metodi pubblici da implementareper la classe AlberoBinario.Nome Param. Ingr. Param. Usc.AlberoBinario() unsigned int φCostruttore con parametro di ingresso di tipo intero non negativo. Ilparametro di ingresso rappresenta l'occorrenza massima con cui glielementi potranno essere presenti nell'albero.Inserisci() TElem boolInserisce l'elemento speci�cato nell'albero solo se esso è presen-te con occorrenza minore dell'occorrenza massima speci�cata nelcostruttore.Il metodo restituisce true o false a seconda che l'inserimento siaavvenuto o meno.EA.5 Profondità Limitata Soluzione a pag. 81Modi�care la classe AlberoBinario (vedi �EA.1) per prevedere il non su-peramento di una profondità massima speci�cata all'atto della costruzionedella struttura.Di seguito è riportata la speci�ca dei due nuovi metodi pubblici da im-plementare per la classe AlberoBinario:Nome Param. Ingr. Param. Usc.AlberoBinario() unsigned int φCostruttore con parametro intero non negativo. Il parametro di in-gresso indica la massima profondità che l'albero può assumere duranteil suo ciclo di vita.

EA. Esercizi su alberi binari 22Inserisci() TElem boolInserisce in maniera ordinata l'elemento speci�cato nell'albero solo seesso non supera la massima profondità prevista per l'albero. Il me-todo restituisce true se l'elemento è stato inserito nell'albero, falsealtrimenti.EA.6 Somma Soluzione a pag. 82Dotare la classe AlberoBinario (vedi �EA.1) del metodo Somma() secondola seguente speci�ca.Nome Param. Ingr. Param. Usc.Somma() TElem φSomma ad ogni elemento dell'albero il valore intero speci�cato comeparametro di ingresso.EA.7 Sostituisci Soluzione a pag. 83Dotare la classe AlberoBinario (vedi �EA.1) del metodo Sostituisci()secondo la seguente speci�ca.Nome Param. Ingr. Param. Usc.Sostituisci() TElem,TElem unsigned intDetti i e j i parametri di ingresso al metodo, sostituisce tutte leoccorrenze dell'elemento i con l'elemento j. Restituisce il numero disostituzioni e�ettuate.N.B.: questo metodo in generale non preserva la proprietà di ordinamentodell'albero. Si assuma comunque che questo metodo agisca sempre su unalbero ordinato.EA.8 Conta Min e Max Soluzione a pag. 83Dotare la classe AlberoBinario (vedi �EA.1) del metodo ContaMinMax(),secondo la seguente speci�ca.

EA. Esercizi su alberi binari 23Nome Param. Ingr. Param. Usc.ContaMinMax() TElem,TElem unsigned intRestituisce il numero degli elementi presenti nell'albero il cui valoreè compreso tra gli interi Min e Max passati in ingresso al metodo,estremi inclusi.EA.9 Profondità Maggiore di Due Soluzione a pag. 84Dotare la classe AlberoBinario (vedi �EA.1) del metodo ProfMaggioreDi-Due() secondo la seguente speci�ca.Nome Param. Ingr. Param. Usc.ProfMaggioreDiDue() φ boolPredicato che indica se la profondità dell'albero è strettamente mag-giore di 2. Restituisce true nel caso in cui la condizione sia veri�cata,false altrimenti.EA.10 Profondita Maggiore Di Soluzione a pag. 84Dotare la classe AlberoBinario (vedi �EA.1) del metodo ProfMaggioreDi()secondo la seguente speci�ca.Nome Param. Ingr. Param. Usc.ProfMaggioreDi() unsigned int boolPredicato che indica se la profondità dell'albero è strettamente mag-giore del valore intero rappresentato dal parametro di ingresso. Re-stituisce true nel caso in cui la condizione sia veri�cata, falsealtrimenti.EA.11 Profondità Massima Soluzione a pag. 85Dotare la classe AlberoBinario (vedi �EA.1) del metodo Profondita(),secondo la seguente interfaccia.

EA. Esercizi su alberi binari 24Nome Param. Ingr. Param. Usc.Profondita() TElem int,boolRestituisce la profondità dell'elemento speci�cato dal parametro diingresso. In caso di occorrenze multiple, restituisce la profonditàmassima. Restituisce inoltre un valore booleano che informa se taleelemento è o meno una foglia dell'albero. Nel caso in cui l'elementonon fosse presente nell'albero, il metodo restituisce il valore -1.EA.12 Somma Livello Soluzione a pag. 85Dotare la classe AlberoBinario (vedi �EA.1) del metodo SommaLivello()secondo la seguente speci�ca.Nome Param. Ingr. Param. Usc.SommaLivello() TElem φSomma ad ogni elemento dell'albero un valore intero pari al livellodel corrispondente nodo. Per es.: al nodo radice verrà aggiunto 1, aisuoi �gli diretti 2. . . ecc.N.B.: questo metodo in generale non preserva la proprietà di ordinamentodell'albero.EA.13 Eliminazione Foglia Soluzione a pag. 86Dotare la classe AlberoBinario (vedi �EA.1) del metodo EliminaFoglia()secondo la seguente speci�ca.Nome Param. Ingr. Param. Usc.EliminaFoglia() TElem boolElimina dall'albero l'elemento speci�cato se e solo se esso è presenteed è una foglia. Il metodo restituisce true in caso di eliminazionee�ettuata, false altrimenti.EA.14 Eliminazione Foglie Soluzione a pag. 86Dotare la classe AlberoBinario (vedi �EA.1) del metodo EliminaFoglie()secondo la seguente speci�ca.

EA. Esercizi su alberi binari 25Nome Param. Ingr. Param. Usc.EliminaFoglie() φ unsigned intElimina dall'albero tutte le foglie. Restituisce il numero di elementieliminati.EA.15 Cerca Foglia Soluzione a pag. 87Dotare la classe AlberoBinario (vedi �EA.1) dei due metodi le cui interfaccesono riportate di seguito.Nome Param. Ingr. Param. Usc.CercaFoglia() TElem bool, boolPredicato che indica se l'elemento speci�cato dal parametro di ingres-so è presente nell'albero. Nel caso in cui sia presente, il metodo resti-tuisce anche un ulteriore valore booleano che indica se esiste almenouna foglia contenente il valore speci�cato.CercaNodo() TElem bool, boolPredicato che indica se l'elemento speci�cato dal parametro di ingres-so è presente nell'albero. Nel caso in cui sia presente, il metodo resti-tuisce anche un ulteriore valore booleano che indica se esiste almenoun nodo contenente il valore speci�cato.EA.16 Operatore di Confronto Soluzione a pag. 88Dotare la classe AlberoBinario (vedi �EA.1) dell'operatore di confronto. Ta-le operatore viene invocato in seguito alla valutazione della seguente espres-sione:a1 == a2 ;(ad esempio in un costrutto if) dove a1 ed a2 sono due istanze della classeAlberoBinario. In questo caso viene invocato l'operatore operator==()sull'oggetto a1, mentre a2, parametro attuale, viene passato per riferimentoprendendo il posto del parametro formale dell'operatore.Di seguito si riporta la speci�ca dell'operatore di confronto da realizzare.

EA. Esercizi su alberi binari 26Nome Param. Ingr. Param. Usc.operator==() AlberoBinario boolÈ l'operatore di confronto tra alberi. Permette di valutare l'esattauguaglianza di due alberi. Fornisce true se esso stesso risulta essereperfettamente uguale all'albero in ingresso (anche strutturalmente),false altrimenti.EA.17 Conta Nodi non Foglia Soluzione a pag. 89Dotare la classe AlberoBinario (vedi �EA.1) del metodo ContaNodiNon-Foglia() secondo la seguente speci�ca.Nome Param. Ingr. Param. Usc.ContaNodiNonFoglia() φ unsigned intRestituisce il numero di nodi non foglia presenti nell'albero.EA.18 Conta Nodi Soluzione a pag. 89Dotare la classe AlberoBinario (vedi �EA.1) del metodo ContaNodi() se-condo la seguente speci�ca.Nome Param. Ingr. Param. Usc.ContaNodi() φ unsigned int,unsigned int,unsigned intRestituisce il numero di nodi dell'albero aventi 0, 1 e 2 �gli, rispetti-vamente.EA.19 Conta Nodi Sottoalbero Soluzione a pag. 90Dotare la classe AlberoBinario (vedi �EA.1) dei metodi aventi l'interfacciaspeci�cata di seguito.

EA. Esercizi su alberi binari 27Nome Param. Ingr. Param. Usc.ContaNodiSottoalb_Min() TElem unsigned intConta i nodi del sottoalbero avente come radice l'elemento il cui va-lore è pari al valore del parametro di ingresso. Nel caso di occorrenzemultiple, la radice viene individuata nell'elemento posizionato al li-vello dell'albero minore rispetto a tutti gli altri. In caso di assenzadell'elemento, il metodo restituisce zero. Si consideri anche la radicedel sottoalbero nel conteggio degli elementi.ContaNodiSottoalb_Max() TElem unsigned intConta i nodi del sottoalbero avente come radice l'elemento il cui va-lore è pari al valore del parametro di ingresso. Nel caso di occorrenzemultiple, la radice viene individuata nell'elemento posizionato al li-vello dell'albero maggiore rispetto a tutti gli altri. In caso di assenzadell'elemento, il metodo restituisce zero. Si consideri anche la radicedel sottoalbero nel conteggio degli elementi.

Capitolo EPEsercizi su pile
EP.1 Push Greater Soluzione a pag. 93Si realizzi in linguaggio C++ il tipo di dato astratto Pila mediante uso delcostrutto class del linguaggio e ricorrendo ad un'implementazione dinamica.Il tipo TElem degli elementi della pila sia il tipo int.Di seguito è riportata la speci�ca dei metodi pubblici da implementareper la classe Pila.Nome Param. Ingr. Param. Usc.Pila() φ φCostruttore senza parametri.�Pila() φ φDistruttore.Push() TElem φAggiunge sulla pila l'elemento speci�cato.PushGreater() TElem boolAggiunge sulla pila l'elemento speci�cato esclusivamente se esso èmaggiore dell'elemento di testa corrente. Nel caso in cui la pila siavuota l'aggiunta è sempre eseguita. Restituisce true oppure false aseconda che l'aggiunta sia stata eseguita oppure no.Top() φ TElemRestituisce l'elemento di testa corrente della pila (ma non lo estrae).In caso di pila vuota il comportamento di questo metodo è nonspeci�cato. 28

EP. Esercizi su pile 29Pop() φ TElemEstrae e restituisce l'elemento di testa corrente della pila. In caso dipila vuota il comportamento di questo metodo è non speci�cato.Svuota() φ φSvuota la pila.Count() φ unsigned intRestituisce il numero di elementi presenti nella pila.Empty() φ boolPredicato vero se la pila è vuota, falso altrimenti.Si realizzi una funzione main() che permetta di e�ettuare il collaudo dellastruttura dati realizzata.Nessuno dei metodi della classe può utilizzare operazioni che coinvolgonogli stream di input ed output (cin e cout). La scrittura e la lettura su streamsono concesse esclusivamente all'interno del programma main().EP.2 Push If Soluzione a pag. 96Si modi�chi la classe Pila dell'esercizio �EP.1 per renderla conforme aimetodi speci�cati di seguito:Nome Param. Ingr. Param. Usc.Pila() unsigned int φCostruttore con parametro. Il parametro di ingresso indica il numerodi inserimenti massimi consecutivi possibili (vedi anche speci�che delmetodo Push()).Push() TElem boolAggiunge sulla pila l'elemento speci�cato se non è stato superato ilnumero massimo di inserimenti consecutivi (cioè non intervallati daalcun prelievo con il metodo Pop() o da uno svuotamento completodella lista con il metodo Svuota()). Nel caso in cui tale numero, spe-ci�cato dal parametro di ingresso del costruttore, sia stato superato,l'inserimento non avviene ed il metodo restituisce false. Altrimentirestituisce true.

EP. Esercizi su pile 30Pop() φ TElemEstrae e restituisce l'elemento di testa corrente della pila. Azzera ilconteggio degli inserimenti. In caso di pila vuota il comportamentodi questo metodo è non speci�cato.Svuota() φ φSvuota la pila ed azzera il conteggio degli inserimenti.

Capitolo ECEsercizi su code
EC.1 Coda Soluzione a pag. 99Si realizzi in linguaggio C++ il tipo di dato astratto Coda mediante uso delcostrutto class del linguaggio e ricorrendo ad un'implementazione dinamica.Il tipo TElem degli elementi della coda sia il tipo int.Di seguito è riportata la speci�ca dei metodi pubblici da implementareper la classe Coda.Nome Param. Ingr. Param. Usc.Coda() φ φCostruttore senza parametri.�Coda() φ φDistruttore.Push() TElem φAccoda l'elemento speci�cato.Top() φ TElemRestituisce l'elemento di testa corrente della coda (ma non lo estrae).In caso di coda vuota il comportamento di questo metodo è nonspeci�cato.Pop() φ TElemEstrae e restituisce l'elemento di testa corrente presente in coda.In caso di coda vuota il comportamento di questo metodo è nonspeci�cato. 31

EC. Esercizi su code 32Somma() φ TElemRestituisce la somma di tutti gli elementi presenti in coda.Svuota() φ φSvuota la coda.Count() φ unsigned intRestituisce il numero di elementi presenti nella coda.Empty() φ boolPredicato vero se la coda è vuota, falso altrimenti.Si realizzi una funzione main() che permetta di e�ettuare il collaudo dellastruttura dati realizzata.Nessuno dei metodi della classe può utilizzare operazioni che coinvolgonogli stream di input ed output (cin e cout). La scrittura e la lettura su streamsono concesse esclusivamente all'interno del programma main().EC.2 Coda con Perdite Soluzione a pag. 103Si realizzi in linguaggio C++ il tipo di dato astratto Coda mediante uso delcostrutto class del linguaggio. Il tipo TElem degli elementi della coda sia iltipo int.Di seguito è riportata la speci�ca dei metodi pubblici da implementareper la classe Coda.Nome Param. Ingr. Param. Usc.Coda() unsigned int φCostruttore con parametro intero. Il parametro indica il numero mas-simo di posti in coda, oltre il quale non deve essere possibile inserireulteriori elementi.�Coda() φ φDistruttore.Push() TElem boolAccoda l'elemento speci�cato. Restituisce true in caso di elementoaccodato, false altrimenti.

EC. Esercizi su code 33Top() φ TElemRestituisce l'elemento di testa corrente della coda (ma non lo estrae).In caso di coda vuota il comportamento di questo metodo è nonspeci�cato.Pop() φ TElemEstrae e restituisce l'elemento di testa corrente presente in coda.In caso di coda vuota il comportamento di questo metodo è nonspeci�cato.Pop() unsigned int TElemEstrae tanti elementi quanti speci�cati dal parametro di ingresso erestituisce solo il primo di questi, cioè l'elemento presente in testaprecedentemente alla chiamata al metodo. Rappresenta una versioneoverloaded del metodo precedente. Nel caso in cui la coda risultivuota all'atto della chiamata al metodo, il comportamento risultanteè non speci�cato.Svuota() φ φSvuota la coda.Count() φ unsigned intRestituisce il numero di elementi presenti nella coda.Empty() φ boolPredicato vero se la coda è vuota, falso altrimenti.Si realizzi una funzione main() che permetta di e�ettuare il collaudo dellastruttura dati realizzata.Nessuno dei metodi della classe può utilizzare operazioni che coinvolgonogli stream di input ed output (cin e cout). La scrittura e la lettura su streamsono concesse esclusivamente all'interno del programma main().EC.3 Coda a Priorità Soluzione a pag. 107Si realizzi in linguaggio C++ il tipo di dato astratto PriorityQueue me-diante uso del costrutto class del linguaggio. Il tipo TElem degli elementidella coda sia il tipo int. La struttura permette di accodare elementi chepossono avere due di�erenti livelli di priorità: high (alta) e low (bassa). Unelemento a bassa priorità viene sempre accodato alla struttura. Un elemento

EC. Esercizi su code 34a priorità alta ha invece la precedenza sugli elementi a priorità bassa, manon sugli elementi a priorità alta eventualmente già presenti nella struttura.Di seguito è riportata la speci�ca dei metodi pubblici da implementareper la classe Coda.Nome Param. Ingr. Param. Usc.PriorityQueue() φ φCostruttore.�PriorityQueue() φ φDistruttore.PushLow() TElem φAccoda un elemento a bassa priorità.PushHigh() TElem φAccoda un elemento ad alta priorità.Pop() φ TElemEstrae e restituisce il primo elemento ad altà priorità o, in sua as-senza, il primo elemento a bassa priorità. In caso di coda vuota ilcomportamento di questo metodo è non speci�cato.Svuota() φ φSvuota la coda.Empty() φ boolPredicato vero se la coda è vuota, falso altrimenti.Si realizzi una funzione main() che permetta di e�ettuare il collaudo dellastruttura dati realizzata.Nessuno dei metodi della classe può utilizzare operazioni che coinvolgonogli stream di input ed output (cin e cout). La scrittura e la lettura su streamsono concesse esclusivamente all'interno del programma main().EC.4 PopMinMax Soluzione a pag. 112Dotare la classe Coda (vedi �EC.1) dei metodi PopMax() e PopMin() secondola seguente speci�ca.

EC. Esercizi su code 35Nome Param. Ingr. Param. Usc.PopMax() unsigned int TElemDetto n il valore del parametro di ingresso di tipo intero, il metodoestrae i primi n valori di testa della struttura e restituisce il massimotra questi. In caso di coda vuota il comportamento di questo metodoè non speci�cato.PopMin() unsigned int TElemDetto n il valore del parametro di ingresso di tipo intero, il metodoestrae i primi n valori di testa della struttura e restituisce il minimotra questi. In caso di coda vuota il comportamento di questo metodoè non speci�cato.

Capitolo EXAltri esercizi
EX.1 Accumulatore Soluzione a pag. 113Si realizzi la classe Accumulatore conforme all'interfaccia seguente.Nome Param. Ingr. Param. Usc.Accumulatore() φ φCostruttore della classe.Add() float φAggiunge all'accumulaotre il valore speci�cato dal parametro diingresso.Reset() φ φAzzera l'accumulatore.GetValue() φ floatRestituisce il valore corrente dell'accumulatore.EX.2 Cifratore Soluzione a pag. 114Implementare la classe Cifratore con la capacità di cifrare stringhe di ca-ratteri attraverso uno slittamento del codice ASCII dei caratteri componentila stringa (c.d. codice di Cesare). L'interfaccia della classe sia la seguente:

36

EX. Altri esercizi 37Nome Param. Ingr. Param. Usc.Cifratore() int φCostruttore della classe. Imposta la costante intera di slittamentoche il cifratore utilizza per crittografare le stringhe.Cifra() char charMetodo di cifratura. Accetta la stringa da cifrare e ne restituisce laversione cifrata. La cifratura consiste in uno slittamento (shift) deicodici ASCII di ogni singolo carattere della stringa.Decifra() char charMetodo di decifratura. Accetta la stringa cifrata attraverso il metodoCifra() e ne restituisce nuovamente la versione decifrata.EX.3 Lista Della Spesa Soluzione a pag. 115Si realizzi in linguaggio C++ il tipo di dato astratto ListaDellaSpesa me-diante uso del costrutto class del linguaggio e ricorrendo ad un'implemen-tazione dinamica. I metodi della struttura dati possono essere implementatiutilizzando indi�erentemente algoritmi iterativi o ricorsivi. Gli elementi dellalista siano del tipo Articolo speci�cato di seguito:typedef char Nome [2 0] ;typedef f loat Quantita ;struct Ar t i c o l o {Nome n ;Quantita q ;} ;Di seguito si riporta la speci�ca dei metodi da implementare.Nome Param. Ingr. Param. Usc.ListaDellaSpesa() φ φCostruttore.�ListaDellaSpesa() φ φDistruttore.

EX. Altri esercizi 38Aggiungi() Nome,Quantita QuantitaSe nella lista non è già presente alcun altro elemento con lo stessonome, inserisce l'elemento speci�cato (nella quantità speci�cata) incoda alla lista. Nel caso in cui invece l'elemento fosse già presentenella lista, vi aggiunge la quantità speci�cata.Il metodo restituisce la quantità con cui l'articolo speci�cato èpresente nella lista in seguito all'aggiunta.Elimina() Nome boolElimina dalla lista l'elemento avente il nome speci�cato (se presente).Il metodo restituisce true se è stato cancellato un elemento, falsealtrimenti.GetQuantita() Nome QuantitaRestituisce la quantità dell'elemento presente nella lista ed avente ilnome speci�cato. Se l'elemento non è presente restituisce zero.Svuota() φ φSvuota la lista.Stampa() φ φStampa il contenuto dell'intera lista nel formato Nome: Quantità,Nome: Quantità, ...L'unico metodo della classe ListaDellaSpesa che può stampare sullostandard-output (cout) è il metodo Stampa(). Gli altri metodi (pubblici,privati o protetti) non possono fare uso delle funzionalità di stampa.Si realizzi una funzione main() che permetta di e�ettuare il collaudo dellastruttura dati realizzata.EX.4 Predittore di Temperatura Soluzione a pag. 119Realizzare la classe TempPredictor che svolga la funzione di predittore ditemperatura. Tale oggetto deve essere capace di fornire una stima dellatemperatura in un certo istante futuro di tempo. La stima è operata apartire da dati presenti e passati forniti dall'utente sui valori di temperaturamisurati attraverso ipotetici sensori.Si supponga che la stima sia ottenuta mediante estrapolazione linearedelle ultime due temperature fornite dall'utente della classe. Per esempio,se l'utente comunica all'oggetto che la temperatura all'istante 0 è pari a 14◦

EX. Altri esercizi 39e che all'istante 5 è pari a 16◦, una richiesta della stima della temperaturaall'istante 10 produrrebbe come risultato 18◦.Si consideri la seguente interfaccia della classe.Nome Param. Ingr. Param. Usc.TempPredictor() Time,Temp φCostruttore della classe. Accetta in ingresso una prima lettura realedella temperatura, insieme all'istante in cui questa è stata campionatada un ipotetico sensore.SetTemp() Time,Temp φFornisce al predittore un ulteriore valore di temperatura campionatoed il relativo istante di campionamento.EstimateTemp() Time TempRichiede al predittore di e�ettuare una stima della temperatura inun particolare istante di tempo speci�cato.Il costruttore accetta in ingresso un primo valore della temperatura adun certo istante di tempo. In assenza di altri dati la stima sarà pari pro-prio a questo valore. Qualsiasi chiamata ad EstimateTemp(), cioè, forniràcome risultato il valore di temperatura speci�cato all'atto della chiamatadel costruttore1. Successivamente l'utente comunicherà all'oggetto nuovi va-lori della temperatura attraverso ripetute chiamate al metodo SetTemp(),speci�candone anche i relativi istanti di tempo.EX.5 Contenitore Soluzione a pag. 121Si realizzi in linguaggio C++ il tipo di dato astratto Contenitore medianteuso del costrutto class del linguaggio. Un Contenitore può contenere istanzedel tipo Oggetto, de�nito come segue:const int NMAX = 50 ;typedef char Nome [NMAX] ;typedef int Peso ;struct Oggetto {Nome n ;Peso p ;} ;1Ciò permette al predittore di operare non appena divenga disponibile un primocampionamento della temperatura.

EX. Altri esercizi 40Inoltre, ogni contenitore può ospitare oggetti �no al raggiungimento diun peso complessivo massimo, oltre il quale nessun altro oggetto può essereospitato.Di seguito è riportata la speci�ca dei metodi pubblici da implementareper la classe Contenitore.Nome Param. Ingr. Param. Usc.Contenitore() Peso φCostruttore con parametro di tipo Peso. Il parametro indica ilpeso massimo raggiungibile dalla totalità degli oggetti presenti nelcontenitore.�Contenitore() φ φDistruttore.Inserisci() Nome,Peso boolInserisce nel contenitore un oggetto avente il nome e il peso speci�-cato. Il metodo restituisce true se l'inserimento va a buon �ne, cioèse il peso dell'elemento da inserire non eccede la capacità residua delcontenitore, false altrimenti.Svuota() φ φSvuota il contenitori di tutti gli oggetti presenti in esso.PesoComplessivo() φ PesoRestituisce il peso complessivo raggiunto dal contenitore.PesoResiduo() φ PesoRestituisce il peso residuo per il raggiungimento della capacitàmassima del contenitore.NumElem() φ unsigned intRestituisce il numero di oggetti presenti nel contenitore.Stampa() φ φStampa le coppie (Nome, Peso) di tutti gli oggetti presenti nelcontenitore.L'unico metodo (pubblico, privato o protetto) della classe Contenitoreche può utilizzare lo standard-output (cout) è il metodo Stampa(). Glialtri metodi dovranno restituire l'esito delle operazioni eseguite mediante gliopportuni parametri di passaggio riportati nelle speci�che.

EX. Altri esercizi 41EX.6 Lista Prenotazioni Soluzione a pag. 124Si realizzi in linguaggio C++ il tipo di dato astratto ListaPrenotazionimediante uso del costrutto class del linguaggio. La lista deve memorizzarele prenotazioni di studenti ad un generico evento (uno ed uno solo). Glielementi della lista siano del tipo Prenotazione speci�cato di seguito:typedef int Matr ico la ;typedef char Nome [3 0] ;struct Prenotaz ione {Matr ico la mat ;Nome nom;} ;I metodi da implementare per la classe ListaPrenotazioni siano con-formi alla seguente interfaccia.Nome Param. Ingr. Param. Usc.ListaPrenotazioni() int φCostruttore con parametro intero. Il parametro indica il numero mas-simo di posti disponibili per l'evento, oltre i quali non deve esserepossibile inserire ulteriori prenotazioni.�ListaPrenotazioni() φ φDistruttore.Prenota() Matricola,Nome boolSe nella lista non è già presente alcuna altra prenotazione con lostesso numero di matricola e se ci sono posti disponibili, inserisceuna nuova prenotazione in coda alla lista. Il metodo restituisce l'esitodell'operazione.EliminaPrenotazione() Matricola booltElimina dalla lista la prenotazione relativa al campo matricola spe-ci�cato (se presente). Il metodo restituisce true se è stato eliminatoun elemento, false altrimenti.GetPostiDisponibili() φ intRestituisce il numero di posti ancora disponibili.EsistePrenotazione() Matricola boolRestituisce true se esiste la prenotazione relativa al numero dimatricola speci�cato, false altrimenti.

EX. Altri esercizi 42Svuota() φ φSvuota la lista.Stampa() φ φStampa il contenuto dell'intera lista nel formato seguente: Matrico-la1: Nome1, Matricola2: Nome2, Matricola3: Nome3, ...L'unico metodo della classe ListaPrenotazioni che può utilizzare lostandard-output (cout) è il metodo Stampa(). Gli altri metodi (pubblici,privati o protetti) non possono fare uso degli stream di I/O.Si realizzi una funzione main() che permetta di e�ettuare il collaudo dellastruttura dati realizzata.EX.7 Classi�ca Soluzione a pag. 128Si realizzi in linguaggio C++ il tipo di dato astratto Classifica medianteuso del costrutto class del linguaggio. L'implementazione deve essere realiz-zata mediante puntatori ed allocazione dinamica della memoria. Gli elementidella lista siano di tipo TElem, de�nito nel modo seguente:const int NMAX = 50 ;typedef char Nome [NMAX] ; //Nome d e l l e squadretypedef struct {Nome n ;unsigned int punteggio ;} Squadra ;typedef Squadra TElem ;Di seguito è riportata la speci�ca dei metodi pubblici da implementareper la classe Classifica.Nome Param. Ingr. Param. Usc.Classifica() φ φCostruttore.�Classifica() φ φDistruttore.

EX. Altri esercizi 43Aggiungi() Nome,unsignedint unsigned intSe la squadra non è già presente, la aggiunge alla struttura e le as-segna il punteggio speci�cato. Nel caso di squadra già presente, ag-giunge il punteggio speci�cato a quello già totalizzato. Restituisce ilnumero di punti correntemente totalizzati dalla squadra.Svuota() φ φSvuota la struttura.Stampa() φ φStampa la classi�ca delle squadre presenti nella struttura, in ordinedecrescente di punteggio.Count() φ unsigned intConta gli elementi contenuti nella struttura.L'unico metodo della classe Classifica che può utilizzare lo standard-output (cout) è il metodo Stampa(). Gli altri metodi (pubblici, privati oprotetti) non possono fare uso degli oggetti per l'I/O.Si realizzi una funzione main() che permetta di e�ettuare il collaudo dellastruttura dati realizzata.Suggerimento: l'aggiornamento di un punteggio nella struttura può essereconvenientemente realizzato attraverso la composizione di un'eliminazione edun inserimento ordinato.EX.8 Agenzia Matrimoniale Soluzione a pag. 132Si realizzi in linguaggio C++ il tipo di dato astratto AgenziaMatrimonialemediante uso del costrutto class del linguaggio. L'implementazione deveessere realizzata mediante puntatori ed allocazione dinamica della memoria.Gli elementi della lista siano di tipo TElem, de�nito nel modo seguente:const int NMAX = 50 ;typedef char Nome [NMAX] ; //Nome Personastruct persona ;typedef struct Persona{Nome n ;bool maschio ;Persona∗ con iuge ;} ;

EX. Altri esercizi 44typedef Persona TElem ;Di seguito è riportata la speci�ca dei metodi pubblici da implementareper la classe AgenziaMatrimoniale.Nome Param. Ingr. Param. Usc.AgenziaMatrimoniale() φ φCostruttore.�AgenziaMatrimoniale () φ φDistruttore.AggiungiPersona() Nome,bool boolAggiunge alla struttura la persona avente nome speci�cato attraversoi parametri di ingresso, e indica se è maschio (parametro di ingressopari a true) o femmina (parametro di ingresso pari a false) Re-stituisce true in caso di inserimento avvenuto, false altrimenti (seesiste già una persona con lo stesso nome).Sposa() Nome,Nome boolMarca come sposate le due persone presenti nella struttura ed aven-ti nomi speci�cati dai parametri di ingresso. Restituisce l'esitodell'operazione. L'operazione fallisce nei casi seguenti:
• uno o entrambi i nomi non sono presenti nella lista;
• le persone speci�cate sono dello stesso sesso;
• una o entrambe le persone risultano già sposate.Coniugato() Nome bool, boolRestituisce due valori booleani. Il primo indica se il nome speci�catoè presente o meno nella lista. Se tale valore è vero, il secondo valorerestituito è pari a vero se la persona dal nome speci�cato è coniugata,falso altrimenti.NumeroSposi() φ unsigned intRestituisce il numero delle persone coniugate nella struttura.NumeroCoppie() φ unsigned intRestituisce il numero di coppie di sposi presenti nella struttura.

EX. Altri esercizi 45Svuota() φ φSvuota la struttura.Stampa() φ φStampa il contenuto della struttura (vedi esempio ???).L'unico metodo della classe AgenziaMatrimoniale che può utilizzare lostandard-output (cout) è il metodo Stampa(). Gli altri metodi (pubblici,privati o protetti) non possono fare uso degli oggetti per l'I/O.Si realizzi una funzione main() che permetta di e�ettuare il collaudo dellastruttura dati realizzata.EX.9 Parco Pattini Soluzione a pag. 136La ditta Sax gestisce una pista di pattinaggio e dispone di un parco pattini.I pattini, tutti dello stesso modello, vengono �ttati ai clienti a tempo, inbase alla taglia della calzatura richiesta. Si implementi in linguaggio C++la classe ParcoPattini utile ad una prima automatizzazione nella gestionedella pista. Data la de�nizione del tipo Taglia:typedef unsigned int Tagl ia ;si implementi la struttura conformemente all'interfaccia speci�cata diseguito.Nome Param. Ingr. Param. Usc.ParcoPattini() φ φCostruttore senza parametri. Inizializza una struttura che contieneun parco pattini vuoto.�ParcoPattini() φ φDistruttore.AggiungiPattini() Taglia φAggiunge al parco un paio di pattini della misura speci�cata.Svuota() φ φSvuota il parco pattini.NumeroTotPattini() φ unsigned intRestituisce il numero di paia di pattini che costituiscono l'interoparco.

EX. Altri esercizi 46Fitta() Taglia boolMarca come ��ttati� un paio di pattini della taglia speci�cata dalparametro di ingresso. Il metodo restituisce true se esiste almeno unpaio di pattini della taglia speci�cata, false altrimenti.Disponibilita() Taglia unsigned intRestituisce il numero di paia di pattini disponibili per la tagliaspeci�cata.NumeroPattini() Taglia unsigned intRestituisce il numero di paia di pattini appartenenti al parco, di datataglia (indipendentemente dal loro stato).Restituzione() Taglia boolMarca nuovamente come �disponibile� un paio di pattini della tagliaspeci�cata. Il metodo restituisce true se e�ettivamente esisteva unpaio di pattini della taglia speci�cata marcati come ��ttati�, falsealtrimenti.Stampa() φ φStampa a video lo stato dell'intero parco pattini.EX.10 Timer Soluzione a pag. 142Si realizzi la classe Timer che svolga le funzioni di cronometro. Tale og-getto deve poter gestire i messaggi START, STOP, RESET e GETTIMEcomportandosi come speci�cato dall'interfaccia seguente.Nome Param. Ingr. Param. Usc.Start() φ φAvvia il conteggio del tempo.Stop() φ φArresta il conteggio del tempo.Reset() φ φArresta ed azzera il timer.GetTime() φ TimeRestituisce il conteggio corrente del tempo.

EX. Altri esercizi 47

0

GETTIME

4

0

START

10

GETTIME

15

5

GETTIME

20

10

STOP

25

GETTIME

30

15

INATTIVO

IL
 T

IM
E

R
 V

IE
N

E
 C

R
E

A
TO

ATTIVO INATTIVO

RESET

35

GETTIME

40

0 Valori conteggio

Figura EX.1: Un esempio d'uso del timer nel tempoNella �gura è riportato un esempio gra�co del funzionamento dell'oggetto.Suggerimenti
• La seguente riga di codice:time t = time (0) ;istanzia una variabile t di tipo time e la pone uguale al tempo disistema, restituito dalla funzione time(), sotto la forma di un interoche rappresenta il numero di secondi trascorsi dalla mezzanotte del 1gennaio 1970. La funzione time() è presente nella libreria C time.h.
• Il funzionamento del timer nei casi non espressamente previsti dallespeci�che sia arbitrario.EX.11 Timer Avanzato Soluzione a pag. 143Con riferimento alla classe Timer dell'esercizio EX.10, si considerino le se-guenti ulteriori speci�che:
• quando il timer riceve il messaggio START, il conteggio non deveripartire sempre da 0, ma dal valore correntemente memorizzato;
• la ricezione di un messaggio START a timer attivo deve essere inin-�uente;
• la ricezione di un messaggio STOP a timer fermo deve essere inin�uente.

EX. Altri esercizi 48Modi�care, se necessario, l'implementazione del timer per rendere la clas-se conforme a queste ulteriori speci�che.EX.12 Votazioni Soluzione a pag. 145Si supponga di voler gestire un exit-poll elettorale. Ad ogni intervistatoall'uscita dal seggio si chiede il partito per cui ha votato. In ogni momentobisogna poi essere in grado di dire quanti voti ha ottenuto ciascun partitoe qual è la distribuzione dei voti tra i partiti. Mediante l'uso del costruttoclass del linguaggio C++, si realizzi una struttura dati adatta all'uopo.Si supponga, per semplicità, che ogni partito è identi�cato con un codiceintero, e si ignorino i voti bianchi e nulli. Di seguito è riportata la speci�cadei metodi pubblici da implementare per la classe Votazioni.Nome Param. Ingr. Param. Usc.Votazioni() φ φCostruttore.�Votazioni() φ φDistruttore.AggiungiVoto() unsigned int unsigned intAggiunge un voto al partito avente il codice speci�cato dal parame-tro di ingresso. Restituisce il numero di voti accumulati �no a quelmomento dal partito.Svuota() φ φSvuota la struttura.GetVotiPartito() unsigned int unsigned intRestituisce il numero di voti ottenuto dal partito avente il codicespeci�cato dal parametro di ingresso.GetNumeroVoti() φ unsigned intRestituisce il numero totale di voti.GetSituazione() φ φStampa a video un riepilogo dei voti complessivamente registrati nellastruttura.

EX. Altri esercizi 49L'unico metodo della classe Votazioni che può utilizzare lo standard-output (cout) è il metodo GetSituazione(). Gli altri metodi (pubblici,privati o protetti) non possono fare uso delle funzionalità di stampa.Si realizzi una funzione main() che permetta di e�ettuare il collaudo dellastruttura dati realizzata.

Parte IISoluzioni

50

Capitolo SLSoluzioni degli esercizi su liste
SL.1 Lista Semplicemente Collegata Traccia a pag. 12Di seguito si riporta il �le Lista.h contenente la dichiarazione della clas-se Lista, oltre che le de�nizioni dei tipi Record e TElem funzionali all'usodella classe. La dichiarazione del tipo Record, che rappresenta la genericacella della lista, rispetta il principio dell'information hiding ; tale tipo infat-ti è esclusivamente dichiarato, e sarà de�nito solo successivamente nel �leLista.cpp. La sua struttura interna risulta pertanto inaccessibile agli utentidella classe. File Lista.h1 #ifndef _LISTA_H_2 #define _LISTA_H_34 struct Record ; // forward dec l a r a t i on : u t i l e a d i c h i a ra r e i l t i p o PRec5 typedef Record ∗ PRec ;6 typedef int TElem ;78 class L i s t a {9 private :10 PRec f i r s t ;11 int count ;1213 L i s t a& operator=(const L i s t a &); //non implementato : i n i b i s c e l ' assegnaz .14 public :15 L i s t a () ; // c o s t r u t t o r e senza parametri16 L i s t a (const L i s t a& l) ; // c o s t r u t t o r e d i copia17 ~L i s t a () ; // d i s t r u t t o r e1819 void I n s e r i s c i (const TElem& e l) ; // Inserimento in t e s t a20 int NumeroElementi () const ; // Re s t i t u i s c e i l num. d e g l i e l ement i n e l l a l i s t a21 void Svuota () ; //Svuota l a l i s t a 51

SL. Soluzioni degli esercizi su liste 5222 void Elimina (const TElem& e l) ; //Elimina un elemento se presen te23 void Stampa () const ; //Stampa su s t . out . t u t t i g l i e l ement i24 bool Ricerca (const TElem& e l) const ; // Indica l a presenza d i un elemento25 } ;2627 #endif /∗ _LISTA_H_ ∗/Le prime due righe del �le appena mostrato, insieme con l'ultima, impe-discono che il �le Lista.h possa essere processato dal pre-compilatore piùdi una volta all'atto della compilazione di un �le sorgente. Ciò accade nel-l'eventualità che, nel grafo delle inclusioni che va a formarsi all'atto dellacompilazione di un �le .cpp, il �le Lista.h risulti incluso da più di un �le.Dal momento che l'header �le Lista.h contiene esclusivamente dichiarazioni(e non de�nizioni), una sua eventuale inclusione multipla sarebbe inin�uenteai �ni della compilazione.Si noti inoltre come l'operatore di assegnazione della lista riportato allariga 13 sia dichiarato tra i metodi privati della classe, nonostante non verràsuccessivamente de�nito nel relativo �le .cpp. Tale dichiarazione è esclusi-vamente �nalizzata ad impedire che tale metodo possa essere invocato dagliutenti della classe Lista. Se ciò accadesse, infatti, verrebbe invocata l'im-plementazione dell'operatore di assegnazione automaticamente sintetizzatadal compilatore e consistente in una copia bit a bit dei membri della classe,verosimilmente scorretta ai �ni di un utilizzo reale della struttura (vedi [5]).File Lista.cpp#include <iostream>#include " l i s t a . h"using namespace std ;struct Record {TElem e l ;PRec succ ;} ;L i s t a : : L i s t a () : f i r s t (0) , count (0) {}L i s t a : : L i s t a (const L i s t a& l) : f i r s t (0) , count (l . count) {//Se provo a cop iare su me s tes so , o se l a l i s t a// l è vuota non esegue alcuna operazione .i f ((this != &l) && l . f i r s t) {f i r s t = new Record ;f i r s t −>e l = l . f i r s t −>e l ;PRec lp = l . f i r s t ;PRec p = f i r s t ;while (lp−>succ) {p−>succ = new Record ;p = p−>succ ;

SL. Soluzioni degli esercizi su liste 53l p = lp−>succ ;p−>e l = lp−>e l ;}p−>succ = 0 ; // imposta a 0 i l succ d e l l ' u l t imo elemento d e l l a l i s t a}}L i s t a : : ~ L i s t a () {// I l d i s t r u t t o r e ha i l compito d i svuo tare l a l i s t a dea l l ocando l e s t r u t t u r e// precedentemente a l l o c a t e con new ne l metodo I n s e r i s c i () . In caso contrar io// s i incorrerebbe in una pe rd i t a d e l l a r e l a t i v a memoria (memory−l e a k) .Svuota () ; //E ' s u f f i c i e n t e invocare i l metodo Svuota () .}void L i s t a : : I n s e r i s c i (const TElem& e l) { // Inserimento in t e s t a .PRec p = new Record ;p−>e l = e l ;p−>succ = f i r s t ;f i r s t = p ;count++;}int L i s t a : : NumeroElementi () const {return count ;}void L i s t a : : Svuota () {PRec tbd ; // tbd = to be de l e t e dwhile (f i r s t) {tbd = f i r s t ;f i r s t = f i r s t −>succ ;delete tbd ;}count = 0 ;}void L i s t a : : Elimina (const TElem& e l) {//Questo metodo e l imina so l o l a eventua l e prima occorrenza// d e l l ' e lemento s p e c i f i c a t o .i f (f i r s t) { // l a l i s t a non è vuotai f (f i r s t −>e l == e l) { // l ' elemento da e l iminare è in t e s t aPRec tbd = f i r s t ;f i r s t = f i r s t −>succ ;delete tbd ;count −−;}else { // l ' elemento da e l iminare non è in t e s t aPRec p = f i r s t ;bool t rovato = fa l se ;while ((p−>succ) && (! t rovato)) {// l ' elemento succ e s s i v o a q u e l l o puntato da p deve e s s e r e e l imina toi f (p−>succ−>e l == e l) {PRec tbd = p−>succ ;p−>succ = tbd−>succ ; // s c o l l e g a l ' e lemento tbd . . .delete tbd ; // . . . e l o e l iminat rovato = true ;count −−;} else

SL. Soluzioni degli esercizi su liste 54p = p−>succ ;}}}}void L i s t a : : Stampa () const {PRec p = f i r s t ;while (p) {cout << p−>e l << " " ;p = p−>succ ;}}bool L i s t a : : Ricerca (const TElem& e l) const {PRec p = f i r s t ;bool t rovato = fa l se ;while ((p) && (! t rovato)) {i f (p−>e l == e l)t rovato = true ;elsep = p−>succ ;}return t rovato ;} File main.cpp#include <iostream>#include <s t d l i b . h>#include " l i s t a . h"using namespace std ;// Pro t o t i p i d i f un z i on i d i supporto per l a v e r i f i c a de l// co r r e t t o funzionamento de i metodi d e l l a c l a s s e Li s ta .void stampaMenu () ;void I n s e r i s c i (L i s t a& l) ;void Ricerca (L i s t a& l) ;void Elimina (L i s t a& l) ;void Svuota (L i s t a& l) ;void NumeroElementi (L i s t a& l) ;void Stampa(L i s t a& l) ;void CopiaLista (L i s t a& l) ;int main (){ char c ;L i s t a l i s t a ;do {stampaMenu () ;c in >> c ;switch (c) {case ' 1 ' :

SL. Soluzioni degli esercizi su liste 55I n s e r i s c i (l i s t a) ;break ;case ' 2 ' :Ricerca (l i s t a) ;break ;case ' 3 ' :Elimina (l i s t a) ;break ;case ' 4 ' :Svuota (l i s t a) ;break ;case ' 5 ' :Stampa(l i s t a) ;break ;case ' 6 ' :NumeroElementi (l i s t a) ;break ;case ' 7 ' :CopiaLista (l i s t a) ;break ;case ' 8 ' :break ;default :cout << " Sce l t a non va l i d a . \ n" ;break ;}} while (c != ' 8 ') ;return 0 ;}void stampaMenu () {cout << endl ;cout << " 1 . I n s e r i s c i " << endl ;cout << " 2 . Ricerca " << endl ;cout << " 3 . Elimina" << endl ;cout << " 4 . Svuota" << endl ;cout << " 5 . Stampa" << endl ;cout << " 6 . Numero Elementi " << endl ;cout << " 7 . Copia" << endl ;cout << " 8 . Esc i " << endl ;cout << endl ;cout << " Sce l t a : " ;}void I n s e r i s c i (L i s t a& l) {int i ;cout << " I n s e r i s c i i n t e r o : " ;c in >> i ;l . I n s e r i s c i (i) ;}void Ricerca (L i s t a& l) {int i ;cout << " I n s e r i s c i i n t e r o : " ;c in >> i ;i f (l . Ricerca (i))cout << "Trovato . \ n" ;elsecout << "Non t rovato . \ n" ;}

SL. Soluzioni degli esercizi su liste 56
first

succ succ succel el elcount

Lista

pp pp

Figura SL.1: Un puntatore �scorre� la lista puntando ai puntatori contenutiin essa.void Elimina (L i s t a& l) {int i ;cout << " I n s e r i s c i i n t e r o : " ;c in >> i ;l . Elimina (i) ;}void Svuota (L i s t a& l) {cout << "Svuotamento l i s t a . " << endl ;l . Svuota () ;}void Stampa(L i s t a& l) {cout << "Stampa : \ n" ;l . Stampa () ;cout << endl ;}void NumeroElementi (L i s t a& l) {cout << "Numero Elementi : " << l . NumeroElementi () << endl ;}void CopiaLista (L i s t a& l) {L i s t a l c o p i a (l) ;cout << "La l i s t a cop ia ta cont i ene : " ;l c o p i a . Stampa () ;cout << endl ;}Implementazione alternativa del metodo Lista::Elimina()È possibile realizzare un'implementazione alternativa del metodo Elimina(),ancora più sintetica di quella appena mostrata. Tale variante, a di�erenzadell'implementazione precedente, non discrimina il caso in cui l'elemento daeliminare sia posizionato in testa alla struttura, ma tratta i due casi in ma-niera omogenea. Per ottenere questo, è su�ciente utilizzare un puntatore aPRec (puntatore a puntatore � vedi Figura SL.1).Inizialmente il puntatore pp de�nito del tipo PRec* punta alla locazionefirst, membro privato della lista (linea continua). Nella (eventuale) secondaiterazione, esso passa a puntare alla locazione succ dell'elemento di testa

SL. Soluzioni degli esercizi su liste 57(linea tratteggiata). In tale passaggio la compatibilità di tipo è rispettata,essendo sia first che il campo succ del tipo Record dichiarati di tipo PRec.void L i s t a : : Elimina (const TElem& e l) {i f (f i r s t) { // l a l i s t a non è vuotaPRec∗ pp = &f i r s t ; // i n d i r i z z o d e l l a v a r i a b i l e f i r s tbool t rovato = fa l se ;while ((∗ pp) && (! t rovato)) {i f ((∗ pp)−>e l == e l) {PRec tbd = ∗pp ;
∗pp = (∗pp)−>succ ;delete tbd ;t rovato = true ;count−−;} elsepp = &((∗pp)−>succ) ;}}}SL.2 Somma Elementi Traccia a pag. 13TElem L i s t a : : Somma() const {PRec p = f i r s t ;TElem somma = 0 ;while (p) {somma = somma + p−>e l ;p=p−>succ ;}return somma;}SL.3 Coda Pari Traccia a pag. 13Per valutare se l'elemento di coda è pari è possibile adottare un approccioiterativo che, a partire dall'elemento di testa, ricerchi l'ultimo elemento e nerestituisca il valore.PRec L i s t a : : getPuntCoda () const {// Re s t i t u i s c e i l puntatore a l l a coda d e l l a l i s t ai f (f i r s t) { // l a l i s t a è non−vuota ?PRec p = f i r s t ;while (p−>succ)p = p−>succ ;return p ;}

SL. Soluzioni degli esercizi su liste 58elsereturn 0 ; // se l a l i s t a è vuota non e s i s t e una coda}bool L i s t a : : CodaPari () const {PRec p = getPuntCoda () ; // r e s t i t u i s c e i l punt . a l l a coda , se c ' è .i f (p)return ((p−>e l % 2) == 0) ;elsereturn fa lse ; // r i t o rna f a l s e per d e f a u l t ;} L'esercizio può essere anche risolto secondo un approccio ricorsivo, cosìcome riportato di seguito.bool L i s t a : : _CodaPari(const PRec p) const {i f (p) {i f (p−>succ)return _CodaPari(p−>succ) ;elsereturn ((p−>e l % 2) == 0) ;} elsereturn 0 ;}bool L i s t a : : CodaPari () const {return _CodaPari(f i r s t) ;}SL.4 Min e Max Traccia a pag. 13La ricerca del minimo e del massimo possono essere condotte secondo un ap-proccio iterativo. Nel listato che segue, si assume inizialmente che il minimoed il massimo siano entrambi rappresentati dall'elemento di testa (linee 3 e4). Successivamente si scandiscono in sequenza gli elementi della lista. Ognivolta che viene individuato un elemento minore del minimo corrente (linea8), il minimo corrente viene aggiornato (linea 9). Analogo discorso vale peril massimo (linee 10 e 11).1 void L i s t a : :MinMax(TElem& min , TElem& max) const {2 i f (f i r s t) {3 min = f i r s t −>e l ;4 max = f i r s t −>e l ;5 PRec p = f i r s t −>succ ;67 while (p) {8 i f (p−>e l < min)9 min = p−>e l ;10 i f (p−>e l > max)11 max = p−>e l ;12 p = p−>succ ;13 }14 }15 }

SL. Soluzioni degli esercizi su liste 59SL.5 Lista Statica Traccia a pag. 14#include <iostream>using namespace std ;const int NMAX = 100 ; //numero max d i e l ement i d e l l a l i s t atypedef int TElem ;class L i s t a {private :TElem v [NMAX] ;int nelem ;public :L i s t a () ;~L i s t a () ;void I n s e r i s c i I nCoda (TElem e l) ;void Svuota () ;void Stampa () const ;int Count () const ;} ;L i s t a : : L i s t a () : nelem (0) {}L i s t a : : ~ L i s t a () {//Qui non è necessar ia alcuna operazione// I l d i s t r u t t o r e poteva anche e s s e r e omesso de l t u t t o .}void L i s t a : : I n s e r i s c i I nCoda (TElem e l) {i f (nelem < NMAX) {v [nelem] = e l ;nelem++;}}void L i s t a : : Svuota () {nelem = 0 ;}void L i s t a : : Stampa () const {for (int i = 0 ; i < nelem ; i++)cout << v [i] << " " ;cout << endl ;}int L i s t a : : Count () const {return nelem ;}void stampa_menu() {cout << " 1 : In s e r i s c i I nCoda . \ n" ;cout << " 2 : Svuota . \ n" ;cout << " 3 : Stampa . \ n" ;cout << " 4 : Count . \ n" ;cout << " 5 : Esc i . \ n" ;}

SL. Soluzioni degli esercizi su liste 60void I n s e r i s c i I nCoda (L i s t a& l) ;void Svuota (L i s t a& l) ;void Stampa(L i s t a& l) ;void Count (L i s t a& l) ;int main (){ L i s t a l ;int s c e l t a ;do {stampa_menu() ;c in >> s c e l t a ;switch (s c e l t a) {case 1 :I n s e r i s c i I nCoda (l) ;break ;case 2 :Svuota (l) ;break ;case 3 :Stampa(l) ;break ;case 4 :Count (l) ;break ;case 5 :break ;default :cout << " Sce l t a non va l i d a . \ n" ;break ;}} while (s c e l t a != 5) ;return 0 ;}void I n s e r i s c i I nCoda (L i s t a& l) {TElem e l ;cout << " I n s e r i s c i va l o r e elemento : " ;c in >> e l ;l . I n s e r i s c i I nCoda (e l) ;}void Svuota (L i s t a& l) {l . Svuota () ;cout << " L i s t a svuotata . \ n" ;}void Stampa(L i s t a& l) {cout << " I l contenuto d e l l a l i s t a e ' : " ;l . Stampa () ;cout << endl ;}void Count (L i s t a& l) {cout << "N. Elem : " << l . Count () << endl ;}

SL. Soluzioni degli esercizi su liste 61
8 3 0 0 1 0 5 4

8 3 1 5 4

nelem = 8

nelem = 5

1 2 3 4 5Figura SL.2: Eliminazione degli elementi con valore 0 dal vettoreSL.6 È Ordinata Traccia a pag. 14bool L i s t a : : EOrdinata () const {int i = 0 ;while (i < nelem − 1) {i f (v [i] > v [i +1])return fa lse ; // esce sub i t o se t rova un ' i n v e r s i onei++;}return true ; // esce senza aver t r o va t o alcuna inve r s i one : l i s t a ord ina ta}SL.7 Elimina Tutti Traccia a pag. 15Ipotizzando che l'elemento da eliminare sia 0, il metodo EliminaTutti()modi�ca il vettore degli elementi come mostrato in Figura SL.2.Per ottenere l'e�etto desiderato è su�ciente scandire in sequenza gli ele-menti del vettore originario (in alto nella �gura). Ad ogni passo, se l'ele-mento puntato è diverso dall'elemento da eliminare, lo si ricopia nel vettorein basso; in caso contrario non si e�ettua alcuna operazione e si passa adanalizzare l'elemento successivo. Alla �ne della scansione il vettore in bassorisulterà composto dai soli elementi del vettore originario diversi da quelloda eliminare.È facile convincersi del fatto che, per realizzare l'operazione appena de-scritta, non sia necessario utilizzare due distinti vettori, ma tutto il procedi-mento può essere svolto su un unico vettore. La copia di un elemento divienein questo caso uno spostamento nell'ambito dello stesso vettore, senza che lasovrascrittura della locazione di destinazione rappresenti un problema. Alloscopo è su�ciente utilizzare due indici i e j:

SL. Soluzioni degli esercizi su liste 62
• i va da 0 a nelem − 1, scandendo in sequenza tutti gli elementi delvettore originario;
• j avanza ogni qual volta un elemento viene �ricopiato�, e pertantorappresenta il riempimento corrente del vettore �ripulito�.Di seguito si riporta il codice del metodo EliminaTutti().int L i s t a : : El iminaTutt i (const TElem& e l) {int j = 0 ;int count = 0 ;for (int i = 0 ; i < nelem ; i++) {i f (v [i] == e l) // sono su un elemento da e l iminarecount++; // incremento i l cont . d e l l e e l iminaz . e non r i c op i o l ' elem .else {i f (i != j) // i e j sono d i v e r s i ? (è i n u t i l e r i c op i a r e se i == j)v [j] = v [i] ; // l o r i c op i o ne l v e t t o r e r i p u l i t oj++; // i l v e t t o r e r i p u l i t o ha ora un elemento in più}}nelem = nelem − count ;return count ;}SL.8 Elimina Ultimi Traccia a pag. 15Il metodo LasciaPrimi() richiede di eliminare gli �elementi di coda� dellalista, preservandone i primi n. Bisogna dapprima considerare i seguenti casidegeneri:
• il numero di elementi da conservare è maggiore del numero di elementipresenti nella lista: nessun elemento va eliminato (righe 2�3);
• il numero degli elementi da conservare è pari a zero: tutti gli elementivanno eliminati (righe 5�9).Negli altri casi, bisogna dapprima scorrere attraverso le prime n posi-zioni della lista (righe 11�16); i restanti elementi dovranno essere eliminati,operando similmente a come accade per il metodo Svuota() (righe 26�30).L'implementazione risultante è la seguente.

SL. Soluzioni degli esercizi su liste 631 unsigned int L i s t a : : Lasc iaPr imi (unsigned int n) {2 i f (n >= nelem) // se n >= nelem , nessun elemento va e l imina to3 return 0 ;45 i f (n == 0) { // se n = 0 t u t t i g l i e l ement i vanno e l im i n a t i6 unsigned int ne l = nelem ;7 Svuota () ;8 return ne l ;9 }1011 PRec p = f i r s t ;1213 // portiamo p a puntare a l l ' u l t imo elemento da tenere n e l l a l i s t a14 // bisogna f a r e n−1 s a l t i15 for (unsigned int i = 1 ; i < n ; i++)16 p = p−>succ ;1718 PRec l a s t = p ; // facciamo puntare da l a s t l ' e lemento che d iverrà l ' u l t imo19 p = p−>succ ; //p punta a l primo da e l iminare20 l a s t−>succ = 0 ; // l ' elemento puntato da l a s t punta ora a zero :21 // l a porz ione d e l l a l i s t a che va e l imin . è ora s c o l l e g a t a2223 unsigned int e l im i n a t i = nelem − n ;2425 //p può ora e s s e r e immaginato come l a t e s t a d i una l i s t a da svuo tare26 while (p) {27 PRec tbd = p ;28 p = p−>succ ;29 delete tbd ;30 }3132 nelem = n ;33 return e l im i n a t i ;34 } Il metodo EliminaUltimi() deve eliminare gli ultimi n elementi. Essonon di�erisce nella sostanza dal precedente metodo, e può essere pertantoimplementato nei termini di quest'ultimo.unsigned int L i s t a : : El iminaUlt imi (unsigned int n) {i f (n >= nelem) { // se n >= nelem la l i s t a va svuo ta taunsigned int n = nelem ;Svuota () ;return n ;} else // a l t r imen t i implement . ques to metodo nei termini d i LasciaPrimi ()return Lasc iaPr imi (nelem − n) ;}SL.9 Somma Coda Traccia a pag. 15L'approccio in generale più e�ciente per risolvere questo problema consistenel tenere memoria in un membro privato della lista del valore della coda.

SL. Soluzioni degli esercizi su liste 64Tale valore deve essere costantemente aggiornato, a cura di tutti i meto-di che possono potenzialmente alterarlo: inserimento, eliminazione, svuota-mento, ecc. Si noti che lo stesso metodo SommaCoda() �nisce per alterareil valore della coda. Di seguito si mostrano le implementazioni dei meto-di Inserisci() e SommaCoda(), nelle ipotesi che la lista sia dotata di unavariabile-membro privata de�nita come segue:class Li s ta {private :. . .TElem valoreCoda ;. . .} ;void L i s t a : : I n s e r i s c i (TElem e l) {// Inserimento in t e s t aPRec p = new Record ;p−>e l = e l ;p−>succ = f i r s t ;f i r s t = p ;nelem++;//Se q u e l l o i n s e r i t o è i l primo elemento , b isogna agg iornare// i l v a l o r e d e l l a coda .i f (! f i r s t −>succ)valoreCoda = e l ;}void L i s t a : : SommaCoda () {i f (f i r s t) {//Se l a l i s t a non è vuota , l a v a r i a b i l e−membro cont i ene un va l . c o r r e t t o .//Lo sommo a t u t t i g l i e l ement i .PRec p = f i r s t ;while (p) {p−>e l = p−>e l + valoreCoda ;p = p−>succ ;}// In ques to punto , i l v a l o r e d e l l ' e lemento d i coda è raddoppiato .//Aggiorno l a v a r i a b i l e−membro .valoreCoda = valoreCoda ∗ 2 ;}}SL.10 Sposta Testa in Coda Traccia a pag. 16Per svolgere l'operazione si fa uso di un metodo di supporto getPuntCoda()deputato a restituire il puntatore all'elemento di coda della lista, se esistemte.Si noti che nessun elemento viene creato (new) o distrutto (delete), mal'operazione è e�ettuata esclusivamente mediante ricollocazione di puntatori.

SL. Soluzioni degli esercizi su liste 65//Metodo p r i v a t oPRec L i s t a : : getPuntCoda () const {// Re s t i t u i s c e i l puntatore a l l a coda d e l l a l i s t ai f (f i r s t) {PRec p = f i r s t ;while (p−>succ)p = p−>succ ;return p ;}elsereturn 0 ; //non e s i s t e una coda se l a l i s t a è vuota}//Metodo pubb l i c obool L i s t a : : SpostaTestaInCoda () {PRec p = getPuntCoda () ; // r e s t i t u i s c e i l punt . a l l a coda , se c ' è .i f (p) {p−>succ = f i r s t ;f i r s t = f i r s t −>succ ;p−>succ−>succ = 0 ;}return (p != 0) ; // se p non è 0 , l o spostamento è s t a t o e f f e t t u a t o}SL.11 Elimina Pari e Dispari Traccia a pag. 16unsigned int L i s t a : : El iminaElement iPostoDispar i () {int n = 0 ;i f (f i r s t) {PRec p = f i r s t ; //p punta a l primo elemento (d i i nd i c e 0 , qu ind i par i)//Se p punta ad un elemento , e ques to elemento ha un succe s s i v o . . .while (p && p−>succ) {PRec tbd = p−>succ ; // . . . i l s u c c e s s i v o deve e s s e r e e l imina to .p−>succ = p−>succ−>succ ; // Sco l l e g o l ' e lemento da canc . d a l l a catena ,delete tbd ; // l o d i s t ruggo ,//p passa a l l ' e lemento success i vo ,// sempre d i i nd i c e par i (n e l l a l i s t a o r i g i n a l e) .p = p−>succ ;n++;}}return n ;}unsigned int L i s t a : : El iminaElement iPostoPar i () {int n = 0 ;i f (f i r s t) { // e s c i s u b i t o se l a l i s t a è vuota . . .// . . . a l t r imen t i c ance l l a su b i t o i l primo elemento (ind i c e 0)PRec tbd = f i r s t ;

SL. Soluzioni degli esercizi su liste 66f i r s t = f i r s t −>succ ;delete tbd ;n++;// essendo s t a t a e l imina ta l a t e s t a non re s t a che// e l iminare t u t t i g l i e l ement i d i posto d i s p a r i d e l l ' a t t u a l e l i s t a .n = n + EliminaElement iPostoDispar i () ;}return n ;}SL.12 Lista Doppiamente Collegata Traccia a pag. 16#include <iostream>using namespace std ;struct Record ;typedef Record ∗ PRec ;typedef int TElem ;struct Record {TElem e l ;PRec prec ;PRec succ ;} ;class L i s t a {private :PRec f i r s t ;PRec l a s t ;unsigned int nelem ;L i s t a (const L i s t a &); // i n i b i s c e l a copia mediante c o s t r u t t o r evoid operator= (const L i s t a &); // i n i b i s c e l ' a s segnaz ionepublic :L i s t a () ;~L i s t a () ;void I n s e r i s c i (TElem e l) ;void Svuota () ;void StampaDiretta () const ;void StampaInversa () const ;void StampaAlternata () const ;unsigned int Count () const ;} ;L i s t a : : L i s t a () : f i r s t (0) , l a s t (0) , nelem (0) {}L i s t a : : ~ L i s t a () {Svuota () ;}void L i s t a : : I n s e r i s c i (TElem e l) {

SL. Soluzioni degli esercizi su liste 67// Inserimento in codaPRec p = new Record ;p−>e l = e l ;p−>succ = 0 ;p−>prec = l a s t ;i f (l a s t)l a s t−>succ = p ;l a s t = p ;i f (! f i r s t)f i r s t = p ;nelem++;}void L i s t a : : Svuota () {PRec tbd ; // to be de l e t e dwhile (f i r s t != 0) {tbd = f i r s t ;f i r s t = f i r s t −>succ ;delete tbd ;}nelem = 0 ;l a s t = 0 ;}void L i s t a : : StampaDiretta () const {PRec p = f i r s t ;while (p != 0) {cout << p−>e l << " " ;p = p−>succ ;}}void L i s t a : : StampaInversa () const {PRec p = l a s t ;while (p != 0) {cout << p−>e l << " " ;p = p−>prec ;}}void L i s t a : : StampaAlternata () const {PRec p = f i r s t ;PRec q = l a s t ;bool done = fa l se ;while ((p) && ! done) {cout << p−>e l << " " ;i f (q != p)cout << q−>e l << " " ;// se p e q sono sov rappo s t i oppure sono cons e cu t i v i//abbiamo terminatoi f ((p == q) | | (p−>succ == q))done = true ;p = p−>succ ;q = q−>prec ;}}

SL. Soluzioni degli esercizi su liste 68unsigned int L i s t a : : Count () const {return nelem ;}void stampa_menu() {cout << " 1 : I n s e r i s c i . \ n" ;cout << " 2 : Svuota . \ n" ;cout << " 3 : Stampa Di re t ta . \ n" ;cout << " 4 : Stampa Inver sa . \ n" ;cout << " 5 : Stampa Al te rnata . \ n" ;cout << " 6 : Count . \ n" ;cout << " 7 : Esc i . \ n" ;}void I n s e r i s c i (L i s t a& l) ;void Svuota (L i s t a& l) ;void StampaDiretta (L i s t a& l) ;void StampaInversa (L i s t a& l) ;void StampaAlternata (L i s t a& l) ;void Count (L i s t a& l) ;int main (){ L i s t a l ;int s c e l t a ;do {stampa_menu() ;c in >> s c e l t a ;switch (s c e l t a) {case 1 :I n s e r i s c i (l) ;break ;case 2 :Svuota (l) ;break ;case 3 :StampaDiretta (l) ;break ;case 4 :StampaInversa (l) ;break ;case 5 :StampaAlternata (l) ;break ;case 6 :Count (l) ;break ;case 7 :break ;default :cout << " Sce l t a non va l i d a . \ n" ;break ;}} while (s c e l t a != 7) ;return 0 ;}void I n s e r i s c i (L i s t a& l) {TElem e l ;cout << " I n s e r i s c i va l o r e elemento : " ;

SL. Soluzioni degli esercizi su liste 69c in >> e l ;l . I n s e r i s c i (e l) ;}void Svuota (L i s t a& l) {l . Svuota () ;cout << " L i s t a svuotata . \ n" ;}void StampaDiretta (L i s t a& l) {cout << "Stampa Di re t ta : " ;l . StampaDiretta () ;cout << endl ;}void StampaInversa (L i s t a& l) {cout << "Stampa Inver sa : " ;l . StampaInversa () ;cout << endl ;}void StampaAlternata (L i s t a& l) {cout << "Stampa Al te rnata : " ;l . StampaAlternata () ;cout << endl ;}void Count (L i s t a& l) {cout << " I l numero d i e l ement i contenut i n e l l a l i s t a e ' : "<< l . Count () << endl ;}SL.13 Ribalta Traccia a pag. 18L'approccio in generale più e�ciente per ribaltare la lista consiste nel modi-�care la con�gurazione di tutti i puntatori contenuti nella struttura, senzapertanto e�ettuare spostamenti �sici di elementi. Di seguito si fornisconodue soluzioni, la prima basata su un metodo iterativo, la seconda su unoricorsivo.Approccio iterativoSi consideri la Figura SL.3(a), in cui è riportata la lista di partenza. Perottenerne il ribaltamento è su�ciente che il campo succ del primo elemento(che punta ad el2) passi a puntare a 0, che il campo succ del secondo elemento(che punta ad el3) passi a puntare al primo, che il campo succ del terzoelemento (che punta ad el4) passi a puntare al secondo. . . e così via. In�ne,il puntatore first (che punta ad el1) dovrà puntare all'elemento eln. Questoprocedimento può essere svolto servendosi di due puntatori che iniziano ascorrere la lista nell'unica direzione concessa, puntando di volta in volta a

SL. Soluzioni degli esercizi su liste 70
first el1 el2 eln(a) Lista originale

eli-1 eli+1eli

p1 p2(b) Prima dell'i-esima iterazione
eli-1 eli+1eli

p1 p2 temp(c) Dopo l'i-esima iterazione
first el1 el2 eln(d) Lista ribaltataFigura SL.3: Il processo logico di ribaltamento di una lista

SL. Soluzioni degli esercizi su liste 71due elementi consecutivi e spostandosi in avanti di un elemento alla volta.Ad ogni passo dell'iterazione lo scambio può essere e�ettuato servendosi diun terzo puntatore temporaneo (vedi Figure SL.3(b) e SL.3(c)). Lo stato�nale della lista al termine dell'iterazione è riportato in Figura SL.3(d).//Versione i t e r a t i v a de l metodo Riba l ta ()//Metodo Pubb l i covoid L i s t a : : R iba l ta () {i f (f i r s t && f i r s t −>succ) { // se l a l i s t a cont i ene almeno 2 e l ement iPRec p1 = f i r s t ; //memorizzo in p1 i l primoPRec p2 = p1−>succ ; //memorizzo in p2 i l secondop1−>succ = 0 ; //p1 , diventando l ' u l t imo elemento , deve puntare a zerowhile (p2−>succ) { // se p2 non è l ' u l t imo elementoPRec temp = p2−>succ ; //memorizzo in temp i l s u c c e s s i v o d i p2p2−>succ = p1 ; // i l s u c c e s s i v o d i p2 è ora p1p1 = p2 ; //p1 d iven ta p2 ;p2 = temp ; //p2 d iven ta temp}// in ques to punto de l cod ice p1 e p2 puntano a g l i u l t im i//due e l ement i d e l l a l i s t a .p2−>succ = p1 ; // i l s u c c e s s i v o d i p2 è ora p1f i r s t = p2 ; //p2 ora è l a nuova t e s t a}}Approccio ricorsivoIl ribaltamento della lista può essere approcciato come un problema ricorsivo.Infatti, avendo una lista, la sua versione ribaltata si ottiene isolando il primoelemento, ribaltando la restante parte della lista, e posponendo a questal'elemento isolato. Il problema del ribaltamento di una lista si riconducedunque al ribaltamento di una seconda lista costituita da un elemento inmeno. Di questo passo ci si troverà a ribaltare una lista costituita da un unicoelemento, la cui versione ribaltata è uguale a sé stessa. Durante il processodi ribaltamento bisogna anche prestare attenzione a redirigere correttamentela testa della (sotto)lista di volta in volta considerata. A questo proposito, ilmetodo ricorsivo _Ribalta() riceve in ingresso il puntatore alla testa dellalista da ribaltare e restituisce la testa della lista ribaltata.//Versione r i c o r s i v a de l metodo Riba l ta ()//Metodo p r i v a t oPRec L i s t a : : _r iba l ta (PRec p) {i f ((! p) | | (! p−>succ)) // se l a l i s t a è formata da 0 o 1 e l ement i//non f a c c i o n ien tereturn p ;else {

SL. Soluzioni degli esercizi su liste 72//memorizzo in vecch ia_tes ta l a vecch ia t e s t aPRec vecch ia_tes ta = p ;//memorizzo in vecchio_secondo i l vecch io secondo elementoPRec vecchio_secondo = p−>succ ;// r i b a l t o l a s o t t o l i s t a con t e s t a in vecchio_secondo . . .// . . . e memorizzo in nuova_testa l a nuova t e s t a .PRec nuova_testa = _r iba l ta (vecchio_secondo) ;// l a vecch ia t e s t a d i v i ene l ' u l t imo elemento (e qu ind i punta a 0)vecchia_testa−>succ = 0 ;// i l vecch io secondo elemento punta a l l a vecch ia t e s t avecchio_secondo−>succ = vecch ia_tes ta ;return nuova_testa ; // r e s t i t u i s c o l a nuova t e s t a}}//Metodo pubb l i c ovoid L i s t a : : R iba l ta () {f i r s t = _r iba l ta (f i r s t) ;}

Capitolo SASoluzioni degli esercizi su alberibinari
SA.1 Albero Binario Traccia a pag. 19File AlberoBinario.h#ifndef _ALBEROBINARIO_H_#define _ALBEROBINARIO_H_struct Nodo ; //Forward dec l a r a t i ontypedef Nodo∗ PNodo ;typedef int TElem ; //L ' a l b e r o cont i ene i n t e r iclass AlberoBinar io {private :PNodo root ; // rad ice d e l l ' a l b e r o// Metodi r i c o r s i v i d i supportovoid _CopiaAlbero (PNodo& dest , const PNodo& source) ;void _Svuota (const PNodo& n) ;void _AggiungiElem (PNodo& n , const TElem& e l) ;void _Sos t i t u i s c e (PNodo& n , PNodo& p) ;bool _InAlb (const PNodo& n , const TElem& e l) const ;void _Elimina(PNodo& n , const TElem& e l) ;void _PreOrdine (const PNodo& n) const ;void _PostOrdine (const PNodo& n) const ;void _InOrdine (const PNodo& n) const ;// opera tore d i as segnaz ione p r i v a t o : i n i b i s c e l ' a s segnaz ione// che provocherebbe una copia s u p e r f i c i a l eAlberoBinar io& operator=(const AlberoBinar io &);public :AlberoBinar io () ; // c o s t r u t t o r e senza parametri73

SA. Soluzioni degli esercizi su alberi binari 74AlberoBinar io (const AlberoBinar io& a) ; // c o s t r u t t o r e d i copia~AlberoBinar io () ; // Di s t ru t t o r evoid AggiungiElem(const TElem& e l) ;bool InAlb (const TElem& e l) const ;void Elimina (const TElem& e l) ;void Svuota () ;void PreOrdine () const ;void PostOrdine () const ;void InOrdine () const ;} ;#endif /∗ _ALBEROBINARIO_H_ ∗/File AlberoBinario.cpp#include <iostream>#include "AlberoBinar io . h"using namespace std ;struct Nodo { // S t ru t t u ra NodoTElem e l ;PNodo s i n ;PNodo des ;} ;AlberoBinar io : : AlberoBinar io () : roo t (0) {}AlberoBinar io : : AlberoBinar io (const AlberoBinar io& a) {i f (this != &a) // copia so l o da un ogge t t o d i f f e r e n t e_CopiaAlbero (root , a . roo t) ;}AlberoBinar io : : ~ AlberoBinar io () {Svuota () ;}// Metodi p r i v a t i r i c o r s i v i d i supportovoid AlberoBinar io : : _CopiaAlbero (PNodo& dest , const PNodo& source) {// Questo metodo r i c o r s i v o acc e t t a in ing r e s s o un puntatore ad un a l b e ro// sorgente (source) e r e s t i t u i s c e in u s c i t a un puntatore ad un a l b e ro che// v iene c o s t r u i t o r i cop iando i l primo .i f (source) { // se l a sorgente non è l ' a l b e r o vuotodes t = new Nodo ; // crea un nuovo nododest−>e l = source−>e l ; // assegna i l contenuto d a l l a sorgente a l l a d e s t i na z .//Ora bisogna r i c r ea r e i l s o t t o a l b e r o s i n i s t r o ed i l s o t t o a l b e r o des t ro// de l nodo puntato da des t r i cop iando i r i s p e t t . s o t t o a l b e r i punta t i da// source . R i f l e t t endo , l ' operazione de s i d e ra t a è de l t u t t o analoga a q u e l l a// g ià invoca ta a p a r t i r e d a l l a rad ice . E ' qu ind i p o s s i b i l e s f r u t t a r e l a// r i c o r s i one ed invocare l o s t e s s o " s e r v i z i o " _CopiaAlbero () consid .// source−>des e source−>sin come r a d i c i d i due d i s t i n t i a l b e r i ._CopiaAlbero (dest−>sin , source−>s in) ; // assegna i l s o t t o a l b e r o s i n i s t r o_CopiaAlbero (dest−>des , source−>des) ; // assegna i l s o t t o a l b e r o des t ro} elsedes t = 0 ;

SA. Soluzioni degli esercizi su alberi binari 75}void AlberoBinar io : : _AggiungiElem (PNodo& n , const TElem& e l) {i f (! n) {n = new Nodo ; // s i crea un nuovo elemento d e l l ' a l b e r o . . .n−>e l = e l ; // . . . e l o s i i n i z i a l i z z a .n−>s in = 0 ;n−>des = 0 ;}elsei f (e l > n−>e l)_AggiungiElem (n−>des , e l) ;else_AggiungiElem (n−>sin , e l) ;}bool AlberoBinar io : : _InAlb (const PNodo& n , const TElem& e l) const {i f (! n)return fa lse ;i f (n−>e l == e l) // l ' elemento cerca to è n e l l a rad ice ?return true ;i f (e l > n−>e l) //è maggiore de l contenuto d e l l a rad ice ?return _InAlb (n−>des , e l) ; // cerca ne l s o t t o a l b e r o des t roelsereturn _InAlb (n−>sin , e l) ; // cerca ne l s o t t o a l b e r o s i n i s t r o}void AlberoBinar io : : _So s t i t u i s c e (PNodo& n , PNodo& p) {// Questo metodo ha come parametri d i ingres so−us c i t a :// −n : un puntatore a l l a rad ice d i un a l b e ro ;// −p : un puntatore ad un nodo .// I l suo e f f e t t o è q u e l l o d i s o s t i t u i r e i l nodo puntato da p con i l massimo// elemento d e l l ' a l b e r o n . La prima v o l t a ques to metodo v iene invoca to// (ne l metodo e l imina) con l a s i n t a s s i _Sos t i s u i s c i (n−>sin , n) , percu i// s i provvede a l l a s o s t i t u z i o n e de l nodo n con i l massimo de l suo// s o t t o a l b e r o s i n i s t r o .PNodo q ;i f (! n−>des) {q = n ;n = n−>s in ;q−>s in=p−>s in ;q−>des=p−>des ;p=q ;} else_Sos t i t u i s c e (n−>des , p) ;}void AlberoBinar io : : _Elimina(PNodo& n , const TElem& e l) {i f (n) { // Eliminare da un a l b e ro vuoto non produce alcuna operazionei f (n−>e l == e l) {// cance l l a nodo correntePNodo p = n ;i f (! n−>s in) // i l ramo s i n i s t r o de l nodo da e l iminare è vuoto ?n = n−>des ; // s o s t i t u z i o n e de l nodo co l suo s o t t o a l b e r o des t roelsei f (! n−>des) // i l ramo des t ro de l nodo da e l iminare è vuoto ?n = n−>s in ; // s o s t i t u z i o n e de l nodo co l suo s o t t o a l b e r o s i n i s t r oelse // i l nodo da e l iminare ha s i a i l s o t t o a l b e r o sx che q u e l l o dx?_Sos t i t u i s c e (n−>sin , n) ; //chiamo i l " s e r v i z i o " S o s t i t u i s c e ()delete p ;

SA. Soluzioni degli esercizi su alberi binari 76} elsei f (e l > n−>e l)_Elimina(n−>des , e l) ;else_Elimina(n−>sin , e l) ;}}void AlberoBinar io : : _Svuota (const PNodo& n) {i f (n) { // Agisce s o l o se l ' a l b e r o e s i s t e_Svuota (n−>s in) ;_Svuota (n−>des) ;delete n ;}}void AlberoBinar io : : _PreOrdine (const PNodo& n) const {i f (n) {cout << n−>e l << " " ;_PreOrdine (n−>s in) ;_PreOrdine (n−>des) ;}}void AlberoBinar io : : _PostOrdine (const PNodo& n) const {i f (n) {_PostOrdine (n−>s in) ;_PostOrdine (n−>des) ;cout << n−>e l << " " ;}}void AlberoBinar io : : _InOrdine (const PNodo& n) const {i f (n) {_InOrdine (n−>s in) ;cout << n−>e l << " " ;_InOrdine (n−>des) ;}}// Metodi p u b b l i c ivoid AlberoBinar io : : AggiungiElem(const TElem& e l) {_AggiungiElem (root , e l) ;}bool AlberoBinar io : : InAlb (const TElem& e l) const {return _InAlb (root , e l) ;}void AlberoBinar io : : Elimina (const TElem& e l) {_Elimina(root , e l) ;}void AlberoBinar io : : Svuota () {_Svuota (root) ;roo t = 0 ;}void AlberoBinar io : : PreOrdine () const {_PreOrdine (root) ;}

SA. Soluzioni degli esercizi su alberi binari 77void AlberoBinar io : : PostOrdine () const {_PostOrdine (root) ;}void AlberoBinar io : : InOrdine () const {_InOrdine (root) ;} File main.cpp#include <iostream>#include "AlberoBinar io . h"using namespace std ;// Pro t o t i p i d i f un z i on i d i supporto per l a v e r i f i c a de l c o r r e t t o funz ion .// de i metodi d e l l a c l a s s e AlberoBinario .void stampaMenu () ;void I n s e r i s c i (AlberoBinar io& a) ;void Ricerca (AlberoBinar io& a) ;void Elimina (AlberoBinar io& a) ;void Svuota (AlberoBinar io& a) ;void PreOrdine (AlberoBinar io& a) ;void InOrdine (AlberoBinar io& a) ;void PostOrdine (AlberoBinar io& a) ;void Copia (AlberoBinar io& a) ;int main () {char c ;AlberoBinar io a lbe ro ;do {stampaMenu () ;c in >> c ;switch (c) {case ' 1 ' :I n s e r i s c i (a lbe ro) ;break ;case ' 2 ' :Ricerca (a lbe ro) ;break ;case ' 3 ' :Elimina (a lbe ro) ;break ;case ' 4 ' :Svuota (a lbe ro) ;break ;case ' 5 ' :PreOrdine (a lbe ro) ;break ;case ' 6 ' :InOrdine (a lbe ro) ;break ;case ' 7 ' :PostOrdine (a lbe ro) ;break ;case ' 8 ' :Copia (a lbe ro) ;

SA. Soluzioni degli esercizi su alberi binari 78break ;case ' 9 ' :break ;default :cout << " Sce l t a non va l i d a . \ n" ;break ;}} while (c != ' 9 ') ;return 0 ;}void stampaMenu () {cout << endl ;cout << " 1 . I n s e r i s c i " << endl ;cout << " 2 . Ricerca " << endl ;cout << " 3 . Elimina" << endl ;cout << " 4 . Svuota" << endl ;cout << " 5 . Pre−ord ine " << endl ;cout << " 6 . InOrdine " << endl ;cout << " 7 . Post−Ordine" << endl ;cout << " 8 . Copia a lbe ro " << endl ;cout << " 9 . Esc i " << endl ;cout << endl ;cout << " Sce l t a : " ;}void I n s e r i s c i (AlberoBinar io& a) {int i ;cout << " I n s e r i s c i i n t e r o : " ;c in >> i ;a . AggiungiElem(i) ;}void Ricerca (AlberoBinar io& a) {int i ;cout << " I n s e r i s c i i n t e r o : " ;c in >> i ;i f (a . InAlb (i))cout << "Trovato . \ n" ;elsecout << "Non t rovato . \ n" ;}void Elimina (AlberoBinar io& a) {int i ;cout << " I n s e r i s c i i n t e r o : " ;c in >> i ;a . Elimina (i) ;}void Svuota (AlberoBinar io& a) {cout << "Svuotamento a lbe ro . " << endl ;a . Svuota () ;}void PreOrdine (AlberoBinar io& a) {cout << "Stampa in pre−ord ine : \ n" ;a . PreOrdine () ;cout << endl ;}

SA. Soluzioni degli esercizi su alberi binari 79void InOrdine (AlberoBinar io& a) {cout << "Stampa in ord ine : \ n" ;a . InOrdine () ;cout << endl ;}void PostOrdine (AlberoBinar io& a) {cout << "Stampa in post−ord ine : \ n" ;a . PostOrdine () ;cout << endl ;}void Copia (AlberoBinar io& a) {AlberoBinar io b(a) ;cout << "La v i s i t a in ord ine d e l l ' a lbe ro cop ia to e ' : " ;b . InOrdine () ;cout << endl ;// a l termine d i ques ta funzione , l ' i s t an za d i AlberoBinario b v iene// d i s t r u t t a e rimossa d a l l o s tack .}SA.2 Numero Elementi Traccia a pag. 20La tecnica più semplice per e�ettuare il conteggio del numero di elementicontenuti in un albero, consiste nel de�nire un membro privato di tipo interonon negativo atto a memorizzare tale valore. Il valore del membro vienealterato da tutti i metodi della struttura che modi�cano il numero di nodipresenti in essa (inserimento, eliminazione, svuotamento, ecc.).Qui si mostrerà un approccio di�erente, di solito meno e�ciente, consi-stente in un metodo ricorsivo che calcola il numero di elementi mediante unavisita completa dell'albero.//Metodo p r i v a t ounsigned int AlberoBinar io : : _NumElem(const PNodo& n) const {i f (n)return 1 + _NumElem(n−>s in) + _NumElem(n−>des) ;elsereturn 0 ;}// Metodo pubb l i c ounsigned int AlberoBinar io : : NumElem() const {return _NumElem(root) ;}SA.3 Occorrenze Traccia a pag. 20

SA. Soluzioni degli esercizi su alberi binari 80//Metodo p r i v a t ounsigned int AlberoBinar io : : _Occorrenze (const PNodo& n ,const TElem& e l) const {i f (! n) //Se l ' a l b e r o con rad ice in n è vuoto . . .return 0 ; // . . . i l numero d i occorrenze è par i a zero .int occ = 0 ;i f (n−>e l == e l)occ++;i f (e l > n−>e l) // i l segno > deve e s s e r e coerente con l a convenzione// s t a b i l i t a per l ' inser imento d e g l i e l ement i n e l l ' a l b e r oocc = occ + _Occorrenze (n−>des , e l) ;elseocc = occ + _Occorrenze (n−>sin , e l) ;return occ ;}//Metodo pubb l i c ounsigned int AlberoBinar io : : Occorrenze (const TElem& e l) const {return _Occorrenze (root , e l) ;}SA.4 Occorrenza Massima Traccia a pag. 21L'interfaccia della classe AlberoBinario da realizzare è mostrata di seguito,con enfasi sulle modi�che da applicare alla versione della classe presentatain �EA.1.class AlberoBinar io {private :. . .const int maxocc ;. . .bool _In s e r i s c i (PNodo& n , const TElem& el , int curr_occ) ;public :AlberoBinar io (unsigned int max_occ) ;. . .bool I n s e r i s c i (const TElem& e l) ;} ; Particolare attenzione merita la funzione Inserisci(). Tale funzionericorsiva si occupa dell'inserimento nell'albero dell'elemento speci�cato dalparametro di ingresso, nel rispetto del vincolo delle occorrenze massime. Essa

SA. Soluzioni degli esercizi su alberi binari 81si basa sulla proprietà secondo la quale, durante l'inserimento di un elementoin un albero binario ordinato, bisogna necessariamente attraversare tutti glieventuali altri nodi contenenti lo stesso valore da inserire. È possibile dun-que discendere attraverso l'albero in cerca della posizione in cui aggiungerel'elemento e, contemporaneamente, tenere il conteggio dell'occorrenza delleeventuali repliche, interrompendo prematuramente l'inserimento in caso diraggiungimento del numero massimo di occorrenze.L'implementazione dei metodi dichiarati è riportata di seguito.AlberoBinar io : : AlberoBinar io (unsigned int max_occ) : roo t (0) ,maxocc (max_occ) {}//Metodo p r i v a t o r i c o r s i v o d i supportobool AlberoBinar io : : _ I n s e r i s c i (PNodo& n , const TElem& el , int curr_occ) {i f (! n) { // se l ' a l b e r o è vuoto i n s e r i s c o certamenten = new Nodo ;n−>e l = e l ;n−>s in = 0 ;n−>des = 0 ;return true ;}else {i f (e l == n−>e l) { // se l ' e lemento corrente è par i ad e l . . .curr_occ++; // . . . incremento curr_occ . . .i f (curr_occ >= maxocc) // . . . e se ha ragg iunto i l l im i t e . . .return fa lse ; // . . . esco con i l v a l o r e f a l s e .}//Se sono qu i i l l im i t e non è s t a t o ragg iunto .i f (e l > n−>e l)return _In s e r i s c i (n−>des , e l , curr_occ) ;elsereturn _In s e r i s c i (n−>sin , e l , curr_occ) ;}}// Metodo pubb l i c o I n s e r i s c i ()bool AlberoBinar io : : I n s e r i s c i (const TElem& e l) {i f (maxocc > 0)return _In s e r i s c i (root , e l , 0) ;elsereturn fa lse ;}SA.5 Profondità Limitata Traccia a pag. 21L'interfaccia della classe AlberoBinario da realizzare è mostrata di seguito,con enfasi sulle modi�che da applicare alla versione della classe presentatain �EA.1.class AlberoBinar io {

SA. Soluzioni degli esercizi su alberi binari 82private :. . .const unsigned int maxDepth ;. . .public :A lberoBinar io (unsigned int _maxDepth) ;. . .bool I n s e r i s c i (const TElem& e l) ;. . .} ;bool AlberoBinar io : : _ I n s e r i s c i (PNodo& n , const TElem& el ,unsigned int _maxDepth) {i f (_maxDepth > 0) {i f (! n) {n = new Nodo ; // s i crea un nuovo elemento d e l l ' a l b e r o . . .n−>e l = e l ; // . . . e l o s i i n i z i a l i z z a .n−>s in = 0 ;n−>des = 0 ;return true ;}elsei f (e l > n−>e l)return _In s e r i s c i (n−>des , e l , _maxDepth − 1) ;elsereturn _In s e r i s c i (n−>sin , e l , _maxDepth − 1) ;}return fa lse ;}// Metodi p u b b l i c iAlberoBinar io : : AlberoBinar io (unsigned int _maxDepth) : roo t (0) ,maxDepth(_maxDepth) {}bool AlberoBinar io : : I n s e r i s c i (const TElem& e l) {return _In s e r i s c i (root , e l , maxDepth) ;}SA.6 Somma Traccia a pag. 22//Metodo p r i v a t ovoid AlberoBinar io : :_Somma(const PNodo& n , int i) {i f (n && (i != 0)) {n−>e l += i ;_Somma(n−>sin , i) ;_Somma(n−>des , i) ;}}

SA. Soluzioni degli esercizi su alberi binari 83//Metodo Pubb l i covoid AlberoBinar io : : Somma(int i) {_Somma(root , i) ;}SA.7 Sostituisci Traccia a pag. 22//Metodo p r i v a t ounsigned int AlberoBinar io : : _So s t i t u i s c i (PNodo& n , TElem i , TElem j) {unsigned int s o s t i t u z i o n i = 0 ;i f (n) {// So s t i t u i s c o prima nei s o t t o a l b e r i . . .i f (i > n−>e l)s o s t i t u z i o n i = s o s t i t u z i o n i + _So s t i t u i s c i (n−>des , i , j) ;elses o s t i t u z i o n i = s o s t i t u z i o n i + _So s t i t u i s c i (n−>sin , i , j) ;// . . . poi n e l l a rad icei f (n−>e l == i) {n−>e l = j ;s o s t i t u z i o n i++;}}return s o s t i t u z i o n i ;}// Metodo pubb l i c ounsigned int AlberoBinar io : : S o s t i t u i s c i (TElem i , TElem j) {return _So s t i t u i s c i (root , i , j) ;}SA.8 Conta Min e Max Traccia a pag. 22Il conteggio degli elementi compresi entro un certo intervallo può essere svoltomediante una visita dell'albero. Data la proprietà di ordinamento dell'albero,non è peraltro necessario visitare completamente la struttura. Si consideriper esempio il caso in cui si debbano conteggiare gli elementi compresi nel-l'intervallo (10, 20). In occasione della visita di un ipotetico elemento pari a
5, è inutile procedere verso il sottoalbero sinistro di tale elemento, che nonha possibilità di fornire un contributo al conteggio in corso.//Metodo p r i v a t ounsigned int AlberoBinar io : : _ContaMinMax (const PNodo& n , TElem Min ,

SA. Soluzioni degli esercizi su alberi binari 84TElem Max) const {i f (n) {int count = 0 ;//Se l ' elemento puntato da e l è compreso t ra Min e Max . . .i f ((n−>e l >= Min) && (n−>e l <= Max))count ++; // . . . incremento count .//Se l ' e lemento puntato da n è minore d i Max . . .i f (n−>e l < Max) {// . . . a l l o r a ne l s o t t o a l b e r o des t ro po t rebbero e s s e r c i a l t r i e l ement i .count = count + _ContaMinMax (n−>des , Min , Max) ;}i f (n−>e l >= Min) //E v i c e v e r s a per i l s o t t o a l b e r o s i n i s t r o .count = count + _ContaMinMax (n−>sin , Min , Max) ;return count ;} elsereturn 0 ; //L ' a l b e r o è vuoto .}//Metodo pubb l i c ounsigned int AlberoBinar io : : ContaMinMax (TElem Min , TElem Max) const {return _ContaMinMax (root , Min , Max) ;}SA.9 Profondità Maggiore di Due Traccia a pag. 23Si noti che il metodo riportato di seguito non è ricorsivo, né richiama alcunaltro metodo.bool AlberoBinar io : : ProfMaggioreDiDue () const {return//c ' è l a rad ice e . . .// . . . o e s i s t e i l nodo d i s i n i s t r a e ques to ha almeno un f i g l i o// oppure e s i s t e i l nodo d i des t ra e ques to ha almeno un f i g l i o .//Tradotto in cod ice s i ha :roo t && ((root−>s in && (root−>sin−>s in | | root−>sin−>des)) | |(root−>des && (root−>des−>s in | | root−>des−>des))) ;}SA.10 Profondita Maggiore Di Traccia a pag. 23//Metodo p r i v a t obool AlberoBinar io : : _ProfMaggioreDi(const PNodo& n , unsigned int p) const {i f (n) { // se l ' a l b e r o è non vuoto . . .i f (p == 0) // se i l con ta tore è (sceso f i no a) zero . . .

SA. Soluzioni degli esercizi su alberi binari 85return true ; // . . . abbiamo superato l a pro f . r i c h i e s t a . . .else // . . . a l t r imen t i b isogna cont inuare l a d i s c e s a nei s o t t o a l b e r i decrement . p .return (_ProfMaggioreDi(n−>sin , p−1) | | _ProfMaggioreDi (n−>des , p−1)) ;}else // . . . a l t r imen t i è f a l s o .return fa lse ;}// Metodo pubb l i c obool AlberoBinar io : : ProfMaggioreDi (unsigned int p) const {return _ProfMaggioreDi (root , p) ;}SA.11 Profondità Massima Traccia a pag. 23int AlberoBinar io : : _Profondita (const PNodo& n , const TElem& el ,bool& f o g l i a) const {i f (n) { // se l ' a l b e r o è vuoto esco sub i t oint p ;// decido se c e r ca r l o a des t ra o a s i n i s t r a e . . .i f (e l > n−>e l)// . . . uso i l s e r v i z i o che io s t e s s o o f f r o : r i c o r s i one .p = _Profondita (n−>des , e l , f o g l i a) ;elsep = _Profondita (n−>sin , e l , f o g l i a) ;i f (p != −1) // se l ' ho t r o va t o in pro fond i tà p a l "piano d i s o t t o " . . .return p + 1 ; // . . . l a pro fond i tà da l mio punto d i v i s t a è p + 1.// se sono qu i vuo l d i r e che ancora devo t r o v a r l oi f (n−>e l == e l) { // se sono propr io io . . .// . . . se non ho f i g l i l ' e lemento t r o va t o è anche una f o g l i a . . .f o g l i a = (! n−>s in && ! n−>des) ;return 1 ; // . . . e l a pro fond i tà da l mio punto d i v i s t a è 1 .}}// se sono qu i non l ' ho t r o va t oreturn −1;}int AlberoBinar io : : Pro fond i ta (const TElem& el , bool& f o g l i a) const {return _Profondita (root , e l , f o g l i a) ;}SA.12 Somma Livello Traccia a pag. 24//Metodo p r i v a t ovoid AlberoBinar io : : _SommaLivello (const PNodo& n , unsigned int i) {

SA. Soluzioni degli esercizi su alberi binari 86i f (n) {n−>e l += i ;_SommaLivello (n−>sin , i +1);_SommaLivello (n−>des , i +1);}}//Metodo pubb l i c ovoid AlberoBinar io : : SommaLivello () {_SommaLivello (root , 1) ;}SA.13 Eliminazione Foglia Traccia a pag. 24//Metodi p r i v a t iinl ine bool AlberoBinar io : : EUnaFoglia (const PNodo& n) {//metodo d i supporto che v e r i f i c a se i l nodo// puntato da n è o meno una f o g l i a .return (! n−>s in && ! n−>des) ;}bool AlberoBinar io : : _EliminaFoglia (PNodo& n , const TElem& e l) {i f (n) { // se n punta ad un nodo (e non a zero)// se l ' e lemento puntato è e l e i l nodo è una f o g l i ai f ((n−>e l == e l) && EUnaFoglia (n)) {delete n ; // e l imina l ' elementon = 0 ; // azzera i l puntatorereturn true ;} elsei f (e l > n−>e l)// r i p e t i l ' operazione ne l s o t t o a l b . des t roreturn _EliminaFoglia (n−>des , e l) ;else// r i p e t i l ' operazione ne l s o t t o a l b . s i n i s t r oreturn _EliminaFoglia (n−>sin , e l) ;}return fa lse ;}//Metodo pubb l i c obool AlberoBinar io : : E l iminaFog l i a (const TElem& e l) {i f (_EliminaFoglia (root , e l)) {numelem−−;return true ;} elsereturn fa lse ;}SA.14 Eliminazione Foglie Traccia a pag. 24

SA. Soluzioni degli esercizi su alberi binari 87//Metodi p r i v a t iinl ine bool AlberoBinar io : : EUnaFoglia (const PNodo& n) {//metodo d i supporto che v e r i f i c a se i l nodo// puntato da n è o meno una f o g l i a .return (! n−>s in && ! n−>des) ;}unsigned int AlberoBinar io : : _EliminaFoglie (PNodo& n) {i f (n) {i f (EUnaFoglia (n)) {delete n ;n = 0 ;return 1 ;}elsereturn _EliminaFoglie (n−>s in) + _EliminaFoglie (n−>des) ;}return 0 ;}//Metodo pubb l i c ounsigned int AlberoBinar io : : E l iminaFog l i e () {unsigned int n = _EliminaFoglie (root) ;numelem = numelem − n ;return n ;//La s t e s s a operazione può e s s e r e s i n t e t i z z a t a (a s cap i t o// d e l l a l e g g i b i l i t à) con l a seguente r i g a d i cod ice :// return (numelem −= _EliminaFoglie (roo t)) ;}SA.15 Cerca Foglia Traccia a pag. 25//Metodi p r i v a t iinl ine bool AlberoBinar io : : EUnaFoglia (const PNodo& n) const {return (! n−>des && ! n−>s in) ;}//Metodi r i c o r s i v i d i supportobool AlberoBinar io : : _CercaFoglia (const PNodo& n , TElem el ,bool& f o g l i a) const {i f (! n)return fa lse ;bool t rovato ;//Cerco sub i t o più in basso .i f (e l > n−>e l)t rovato = _CercaFoglia (n−>des , e l , f o g l i a) ;elset rovato = _CercaFoglia (n−>sin , e l , f o g l i a) ;i f (! t rovato) { //Se più in basso non l ' ho t r o va t o . . .

SA. Soluzioni degli esercizi su alberi binari 88i f (n−>e l == e l) { // . . . e sono propr io io . . .t rovato = true ; // . . . imposto t r o va t o a t rue . . .f o g l i a = EUnaFoglia (n) ; // . . . e v e r i f i c o se è una f o g l i a .}}return t rovato ;}bool AlberoBinar io : : _CercaNodo(const PNodo& n , TElem el , bool& nodo) const {i f (! n)return fa lse ;i f (n−>e l == e l) { //Se l ' elemento corrente è par i ad e l . . .nodo = (! EUnaFoglia (n)) ; // . . . v e r i f i c o se è un nodo . . .return true ; // . . . ed esco con r i s u l t a t o p o s i t i v o .//E ' i n f a t t i i n u t i l e procedere verso i l basso .}else //Se non l ' ho t rova to , cerco più in basso .i f (e l > n−>e l)return _CercaNodo(n−>des , e l , nodo) ;elsereturn _CercaNodo(n−>sin , e l , nodo) ;}// Metodi p u b b l i c ibool AlberoBinar io : : CercaFogl ia (TElem el , bool& f o g l i a) const {return _CercaFoglia (root , e l , f o g l i a) ;}bool AlberoBinar io : : CercaNodo (TElem el , bool& nodo) const {return _CercaNodo(root , e l , nodo) ;}SA.16 Operatore di Confronto Traccia a pag. 25//Metodo p r i v a t obool AlberoBinar io : : _uguale (const PNodo& n1 , const PNodo& n2) const {i f (n1 == n2) //Se i punta tor i a l l e r a d i c i coincidono , g l i a l b e r ireturn true ; // sono ugua l i .//Abbiamo g e s t i t o anche l ' e v e n t u a l i t à che// g l i a l b e r i s iano entrambi vuo t i .i f ((! n1 | | ! n2) && (n1 | | n2)) //Se so l o una d e l l e due rad . è 0 (XOR) . . .return fa lse ; // . . . i due a l b e r i non sono ugua l i// (perché l ' a l t r a certamente non è zero)//Appurato che nessuna d e l l e due r a d i c i punta a zero . . .i f (n1−>e l != n2−>e l) // . . . se i due elem . punta t i da n1 e n2 sono d i v e r s i . . .return fa lse ; // . . . a l l o r a i due a l b e r i non sono ugua l i .//Dunque , abbiamo due a l b e r i non vuo t i e contenent i e l ement i// d i uguale va l o r e n e l l a rad ice .//Bisogna ora c on t r o l l a r e se i l o r o s o t t o a l b e r i s i n i s t r o e// des t ro sono ugua l i : r i c o r s i one .return _uguale (n1−>sin , n2−>s in) && _uguale (n1−>des , n2−>des) ;

SA. Soluzioni degli esercizi su alberi binari 89}// Metodo pubb l i c obool AlberoBinar io : : operator==(const AlberoBinar io& rhs) const {// Chiamo i l metodo p r i v a t o _uguale () e g l i passo l a mia rad ice// e l a rad ice d e l l ' a l b e r o rhs .return _uguale (root , rhs . roo t) ;}SA.17 Conta Nodi non Foglia Traccia a pag. 26//Metodo p r i v a t ounsigned int AlberoBinar io : : _ContaNodiNonFoglia (const PNodo& n) const {i f (! n)return 0 ;unsigned int count = 0 ;// eventua l e con t r i bu t o s o t t o a l b e r o s i n i s t r oi f (n−>s in)count = count + _ContaNodiNonFoglia (n−>s in) ;// eventua l e con t r i bu t o s o t t o a l b e r o des t roi f (n−>des)count = count + _ContaNodiNonFoglia (n−>des) ;// eventua l e con t r i bu t o de l presen te nodoi f (n−>s in | | n−>des)count++;return count ;}//Metodo pubb l i c ounsigned int AlberoBinar io : : ContaNodiNonFoglia () const {return _ContaNodiNonFoglia (root) ;}SA.18 Conta Nodi Traccia a pag. 26//Metodo p r i v a t ovoid AlberoBinar io : : _ContaNodi (const PNodo& n , unsigned int& zero ,unsigned int& uno , unsigned int& due) const {i f (n) {_ContaNodi (n−>sin , zero , uno , due) ;_ContaNodi (n−>des , zero , uno , due) ;i f (n−>s in && n−>des)due++;else

SA. Soluzioni degli esercizi su alberi binari 90i f (! n−>s in && ! n−>des)ze ro++;elseuno++;}}//Metodo pubb l i c ovoid AlberoBinar io : : ContaNodi (unsigned int& zero , unsigned int& uno ,unsigned int& due) const {ze ro = 0 ;uno = 0 ;due = 0 ;_ContaNodi (root , zero , uno , due) ;}SA.19 Conta Nodi Sottoalbero Traccia a pag. 26Il problema posto può essere scomposto in due sottoproblemi:
• individuare la radice del sottoalbero di cui contare i nodi;
• contare i nodi del sottoalbero individuato.Solo la prima delle due operazioni suddette dipende da quale dei duemetodi viene invocato, a di�erenza della seconda che resta inalterata. Questaconsiderazione suggerisce di aggiungere alla classe AlberoBinario i seguentimetodi:class AlberoBinar io {private :. . .unsigned int _ContaNodi(const PNodo& n) const ;PNodo _CercaOccorrenzaMin (const PNodo& n ,const TElem& e l) const ;PNodo _CercaOccorrenzaMax (const PNodo& n ,const TElem& e l) const ;public :. . .unsigned int ContaNodiSottoalb_Min (const TElem& e l) const ;unsigned int ContaNodiSottoalb_Max(const TElem& e l) const ;} ;Il metodo _ContaNodi() restituisce il numero di nodi di un sottoalberodi cui sia fornita la radice. Il metodo _CercaOccorrenzaMin() restituisceil puntatore al nodo avente valore speci�cato e posizionato più in alto (li-vello minimo) all'interno di un albero di cui si fornisce la radice. Analogo

SA. Soluzioni degli esercizi su alberi binari 91comportamento ha il metodo _CercaOccorrenzaMax(). I due metodi pub-blici svolgono le operazioni richieste basandosi sui metodi privati mostrati._CercaOccorrenzaMin(), ad esempio, invoca il metodo ricorsivo _Cerca-OccorrenzaMin() perché individui la radice del sottoalbero; su tale radiceinvoca poi il metodo _ContaNodi().Di seguito si riportano le implementazioni dei cinque metodi dichiarati.// Metodi p r i v a t i r i c o r s i v i d i supportounsigned int AlberoBinar io : : _ContaNodi (const PNodo& n) const {i f (n)return 1 + _ContaNodi (n−>s in) + _ContaNodi (n−>des) ;elsereturn 0 ;}PNodo AlberoBinar io : : _CercaOccorrenzaMin (const PNodo& n ,const TElem& e l) const {//Cerca n e l l ' a l b e r o avente rad ice in n l ' elemento i l cu i v a l o r e è par i//ad e l ed i l cu i l i v e l l o è minimo . Ne r e s t i t u i s c e i l puntatore .i f (n) {i f (n−>e l == e l) //Se sono i l nodo con l ' elemento cerca to . . .return n ; // . . . r e s t i t u i s c o i l puntatore a me s t e s s o . . .elsei f (n−>e l < e l) // . . . a l t r imen t i cerco " più g iù "return _CercaOccorrenzaMin (n−>des , e l) ;elsereturn _CercaOccorrenzaMin (n−>sin , e l) ;} elsereturn 0 ;}PNodo AlberoBinar io : : _CercaOccorrenzaMax(const PNodo& n ,const TElem& e l) const {//Cerca n e l l ' a l b e r o avente rad ice in n l ' elemento i l cu i v a l o r e è par i//ad e l ed i l cu i l i v e l l o è massimo . Ne r e s t i t u i s c e i l puntatore .i f (n) {PNodo r e s u l t ;i f (n−>e l < e l) //Cerco prima "più g iù"r e s u l t = _CercaOccorrenzaMax(n−>des , e l) ;elser e s u l t = _CercaOccorrenzaMax(n−>sin , e l) ;i f (r e s u l t) //Se l ' ho t r o va t o . . .return r e s u l t ; // . . . l o r e s t i t u i s c o . . .elsei f (n−>e l == e l) // . . . a l t r imen t i v e r i f i c o d i non e s s e r e l ' elem . cerca to .return n ; //Se sono io , r e s t i t u i s c o i l puntatore a me s t e s s o . . .elsereturn 0 ; // . . . a l t r imen t i r e s t i t u i s c o 0 .} elsereturn 0 ;}// Metodi p u b b l i c iunsigned int AlberoBinar io : : ContaNodiSottoalb_Min (const TElem& e l) const {PNodo n = _CercaOccorrenzaMin (root , e l) ;i f (n) //C' è almeno un elemento par i ad e l ?return _ContaNodi (n) ;elsereturn 0 ;

SA. Soluzioni degli esercizi su alberi binari 92}unsigned int AlberoBinar io : : ContaNodiSottoalb_Max(const TElem& e l) const {PNodo n = _CercaOccorrenzaMax(root , e l) ;i f (n) //C' è almeno un elemento par i ad e l ?return _ContaNodi (n) ;elsereturn 0 ;}

Capitolo SPSoluzioni degli esercizi su pile
SP.1 Push Greater Traccia a pag. 28#include <iostream>#include <s t d l i b . h>using namespace std ;typedef int TElem ;struct Record ;typedef Record ∗ PRec ;typedef struct Record {TElem e l ;PRec succ ;} ;class Pi la {private :PRec top ;int nelem ;public :P i l a (unsigned int p = 0) ;~Pi la () ;void Push (const TElem& e) ;bool PushGreater (const TElem& e) ;TElem Top () const ;TElem Pop () ;void Svuota () ;unsigned int Count () const ;bool Empty () const ;} ;P i l a : : P i l a () : top (0) , nelem (0) {}Pi la : : ~ Pi la () {Svuota () ;} 93

SP. Soluzioni degli esercizi su pile 94void Pi la : : Push (const TElem& e) {PRec p = new Record ;p−>e l = e ;p−>succ = top ;top = p ;nelem++;}bool Pi la : : PushGreater (const TElem& e) {i f (Empty () | | (e > Top ())) {Push (e) ;return true ;} elsereturn fa lse ;}TElem Pi la : : Top () const {i f (top)return top−>e l ;// ques to metodo r e s t i t . un va l o r e non s p e c i f . ne l caso l a p i l a s i a vuota}TElem Pi la : : Pop () {i f (top) {TElem e = top−>e l ; //memorizza i l v a l o r e d i t e s t a per r e s t i t . a l l a f i n e//memorizza i l puntatore a l l a t e s t a : essa dovrà e s s e r e cance l l a t aPRec p = top ;top = top−>succ ; // porta l a t e s t a a l s u c c e s s i v odelete p ; // e l imina l a vecch ia t e s t anelem−−;return e ;}// ques to metodo r e s t i t . un va l o r e non s p e c i f . ne l caso l a p i l a s i a vuota}void Pi la : : Svuota () {while (top) {PRec p = top ;top = top−>succ ;delete p ;}nelem = 0 ;}unsigned int Pi la : : Count () const {return nelem ;}bool Pi la : : Empty () const {return (nelem == 0) ;}void stampaMenu () ;void Push (Pi la& p) ;void PushGreater (P i l a& p) ;void Top(Pi la& p) ;void Pop(Pi la& p) ;

SP. Soluzioni degli esercizi su pile 95void Svuota (P i l a& p) ;void Count (P i l a& p) ;void Empty(P i l a& p) ;int main (){ char c ;P i l a p i l a ;do {stampaMenu () ;c in >> c ;c in . i gnore () ;switch (c) {case ' 1 ' :Push (p i l a) ;break ;case ' 2 ' :PushGreater (p i l a) ;break ;case ' 3 ' :Top(p i l a) ;break ;case ' 4 ' :Pop(p i l a) ;break ;case ' 5 ' :Svuota (p i l a) ;break ;case ' 6 ' :Count (p i l a) ;break ;case ' 7 ' :Empty(p i l a) ;break ;case ' 8 ' :break ;default :cout << " Sce l t a non va l i d a . \ n" ;break ;}} while (c != ' 8 ') ;return 0 ;}void stampaMenu () {cout << endl ;cout << " 1 . Push" << endl ;cout << " 2 . PushGreater " << endl ;cout << " 3 . Top" << endl ;cout << " 4 . Pop" << endl ;cout << " 5 . Svuota" << endl ;cout << " 6 . Count" << endl ;cout << " 7 . Empty" << endl ;cout << " 8 . Esc i " << endl ;cout << endl ;cout << " Sce l t a : " ;}void Push (Pi la& p) {

SP. Soluzioni degli esercizi su pile 96TElem e l ;cout << " I n s e r i r e elemento : " ;c in >> e l ;p . Push (e l) ;}void PushGreater (P i l a& p) {TElem e l ;cout << " I n s e r i r e elemento : " ;c in >> e l ;i f (p . PushGreater (e l))cout << "Elemento i n s e r i t o . \ n" ;elsecout << "Elemento non i n s e r i t o . \ n" ;}void Top(Pi la& p) {i f (! p . Empty ())cout << "Elemento d i t e s t a : " << p .Top () << endl ;elsecout << "Pi la vuota . " << endl ;}void Pop(Pi la& p) {i f (! p . Empty ())cout << "Elemento d i t e s t a : " << p .Pop () << endl ;elsecout << "Pi la vuota . " << endl ;}void Svuota (P i l a& p) {p . Svuota () ;cout << "Pi la svuotata . \ n" ;}void Count (P i l a& p) {cout << "Numero e l ement i : " << p . Count () << endl ;}void Empty(P i l a& p) {i f (p .Empty ())cout << "True . " << endl ;elsecout << "Fa l s e . " << endl ;}SP.2 Push If Traccia a pag. 29Nella parte privata della classe sono dichiarati i seguenti membri:class Pi l a {private :. . .const unsigned int _maxpush ;unsigned int _currpush ;void _Push(const TElem& e) ;

SP. Soluzioni degli esercizi su pile 97. . .} ;La variabile membro _maxpush tiene memoria di qual è il numero diinserimenti massimi consecutivi ammessi; il suo valore è inizializzato dal co-struttore al valore del parametro di ingresso e mai più variato durante il ciclodi vita delle istanze della classe. La variabile membro _currpush tiene me-moria del numero di inserimenti consecutivi correntemente e�ettuati. Ognichiamata al metodo Push() deve veri�care che questo parametro non ecce-da il valore massimo consentito. Il metodo privato _Push() è implementatocome una classica Push().Di seguito si riporta l'implementazione dei metodi richiesti dalla traccia.Pi la : : P i l a (unsigned int maxpush) :top (0) , nelem (0) , _maxpush(maxpush) , _currpush (0) {}void Pi la : : _Push (const TElem& e) {// Class i ca Push () in una p i l a : metodo p r i v a t oPRec p = new Record ;p−>e l = e ;p−>succ = top ;top = p ;nelem++;}bool Pi la : : Push (const TElem& e) {i f (_currpush < _maxpush) {_Push (e) ; // In s e r i s c e incondiz ionatamente n e l l a p i l a_currpush++;return true ;}return fa lse ;}TElem Pi la : : Pop () {i f (top) {//memorizza i l v a l o r e d i t e s t a per r e s t i t u i r l o a l l a f i n eTElem e = top−>e l ;//memorizza i l puntatore a l l a t e s t a : essa dovrà e s s e r e cance l l a t aPRec p = top ;top = top−>succ ; // porta l a t e s t a a l s u c c e s s i v odelete p ; // e l imina l a vecch ia t e s t anelem−−;_currpush = 0 ; // azzero i l con tegg io d e g l i inser iment ireturn e ;}// ques to metodo r e s t i t u i s c e un va l o r e non// s p e c i f i c a t o ne l caso l a p i l a s i a vuota}void Pi la : : Svuota () {while (top) {PRec p = top ;

SP. Soluzioni degli esercizi su pile 98top = top−>succ ;delete p ;}nelem = 0 ;_currpush = 0 ; // azzero i l con tegg io d e g l i inser iment i}

Capitolo SCSoluzioni degli esercizi su code
SC.1 Coda Traccia a pag. 31#include <iostream>#include <s t d l i b . h>using namespace std ;typedef int TElem ;struct Record ;typedef Record ∗ PRec ;typedef struct Record {TElem e l ;PRec succ ;} ;class Coda {private :PRec head ;PRec t a i l ;int nelem ;public :Coda () ;~Coda () ;void Push (const TElem& e) ;TElem Top () const ;TElem Pop () ;TElem Somma() const ;void Svuota () ;unsigned int Count () const ;bool Empty () const ;} ;Coda : : Coda () : head (0) , t a i l (0) , nelem (0) {}Coda : :~ Coda () {Svuota () ; 99

SC. Soluzioni degli esercizi su code 100}void Coda : : Push (const TElem& e) {//Creo un nuovo elemento n e l l ' heapPRec temp = new Record ;temp−>e l = e ;temp−>succ = 0 ;// se c ' è un elemento d i coda ques to deve puntare a l nuovo elementoi f (t a i l)t a i l−>succ = temp ;// in ogni caso l a coda punterà a l nuovo elementot a i l = temp ;// se l a t e s t a non punta ad un elemento , deve puntare a l nuovo elemento :// l a coda , c ioè , era vuota a l momento d e l l ' inser imentoi f (! head)head = temp ;nelem++;}TElem Coda : : Top () const {i f (head)return head−>e l ;}TElem Coda : : Pop () {i f (head) {PRec temp = head ;TElem el_temp = temp−>e l ;//head passa a puntare a l l ' e lemento succ e s s i v ohead = head−>succ ;// se non punta a n ien te vuo l e d i r e che l a coda conteneva un so l o elem .//anche t a i l qu ind i deve puntare a 0i f (! head)t a i l = 0 ;nelem−−;delete temp ;return el_temp ;}}TElem Coda : : Somma() const {TElem sum = 0 ;for (PRec temp = head ; temp != 0 ; temp = temp−>succ)sum = sum + temp−>e l ;return sum ;}void Coda : : Svuota () {while (head != 0) {PRec tbd = head ;head = head−>succ ;delete tbd ;}

SC. Soluzioni degli esercizi su code 101head = t a i l = 0 ;nelem = 0 ;}unsigned int Coda : : Count () const {return nelem ;}bool Coda : : Empty () const {return (nelem == 0) ;}void stampaMenu () ;void Push (Coda& c) ;void Top(Coda& c) ;void Pop(Coda& c) ;void Somma(Coda& c) ;void Svuota (Coda& c) ;void Count (Coda& c) ;void Empty(Coda& c) ;int main (){ char c ;Coda coda ;do {stampaMenu () ;c in >> c ;c in . i gnore () ;switch (c) {case ' 1 ' :Push (coda) ;break ;case ' 2 ' :Top(coda) ;break ;case ' 3 ' :Pop(coda) ;break ;case ' 4 ' :Somma(coda) ;break ;case ' 5 ' :Svuota (coda) ;break ;case ' 6 ' :Count (coda) ;break ;case ' 7 ' :Empty(coda) ;break ;case ' 8 ' :break ;default :cout << " Sce l t a non va l i d a . \ n" ;break ;}} while (c != ' 8 ') ;return 0 ;

SC. Soluzioni degli esercizi su code 102}void stampaMenu () {cout << endl ;cout << " 1 . Push" << endl ;cout << " 2 . Top" << endl ;cout << " 3 . Pop" << endl ;cout << " 4 . Somma" << endl ;cout << " 5 . Svuota" << endl ;cout << " 6 . Count" << endl ;cout << " 7 . Empty" << endl ;cout << " 8 . Esc i " << endl ;cout << endl ;cout << " Sce l t a : " ;}void Push (Coda& c) {TElem e l ;cout << " I n s e r i r e elemento : " ;c in >> e l ;c . Push (e l) ;}void Top(Coda& c) {i f (! c . Empty ())cout << "Elemento d i t e s t a : " << c .Top () << endl ;elsecout << "Coda vuota . " << endl ;}void Pop(Coda& c) {i f (! c . Empty ())cout << "Elemento d i t e s t a : " << c . Pop () << endl ;elsecout << "Coda vuota . " << endl ;}void Somma(Coda& c) {cout << "Somma e l ement i : " << c .Somma() << endl ;}void Svuota (Coda& c) {c . Svuota () ;cout << "Coda svuotata . \ n" ;}void Count (Coda& c) {cout << "Numero e l ement i : " << c . Count () << endl ;}void Empty(Coda& c) {i f (c . Empty ())cout << "True . " << endl ;elsecout << "Fa l s e . " << endl ;}

SC. Soluzioni degli esercizi su code 103SC.2 Coda con Perdite Traccia a pag. 32#include <iostream>#include <s t d l i b . h>using namespace std ;typedef int TElem ;struct Record ;typedef Record ∗ PRec ;typedef struct Record {TElem e l ;PRec succ ;} ;class Coda {private :PRec head ;PRec t a i l ;const unsigned int po s t i ;int nelem ;public :Coda(unsigned int _posti) ;~Coda () ;bool Push (const TElem& e) ;TElem Top () const ;TElem Pop () ;TElem Pop(unsigned int n) ;void Svuota () ;unsigned int Count () const ;bool Empty () const ;} ;Coda : : Coda(unsigned int _posti) : head (0) , t a i l (0) , p o s t i (_posti) , nelem (0) {}Coda : :~ Coda () {Svuota () ;}bool Coda : : Push (const TElem& e) {i f (nelem == pos t i)return fa lse ;//Creo un nuovo elemento n e l l ' heapPRec temp = new Record ;temp−>e l = e ;temp−>succ = 0 ;// se c ' è un elemento d i coda ques to deve puntare a l nuovo elementoi f (t a i l)t a i l−>succ = temp ;// in ogni caso l a coda punterà a l nuovo elementot a i l = temp ;// se l a t e s t a non punta ad un elemento , deve puntare a l nuovo elemento :

SC. Soluzioni degli esercizi su code 104// l a coda , c ioè , era vuota a l momento d e l l ' inser imentoi f (! head)head = temp ;nelem++;return true ;}TElem Coda : : Top () const {i f (head)return head−>e l ;}TElem Coda : : Pop () {i f (head) {PRec temp = head ;TElem el_temp = temp−>e l ;//head passa a puntare a l l ' e lemento succ e s s i v ohead = head−>succ ;// se non punta a n ien te vuo l e d i r e che l a coda conteneva un so l o elem .//anche t a i l qu ind i deve puntare a 0i f (! head)t a i l = 0 ;nelem−−;delete temp ;return el_temp ;}}TElem Coda : : Pop (unsigned int n) {i f (head) {TElem e l = Pop () ;// e s t r a z i one de i r e s t a n t i e l ement i : s i usa i l metodo Pop () ;for (int i = 2 ; (i <= n) && head ; i++)Pop () ;return e l ;}}void Coda : : Svuota () {while (head != 0) {PRec tbd = head ;head = head−>succ ;delete tbd ;}head = t a i l = 0 ;nelem = 0 ;}unsigned int Coda : : Count () const {return nelem ;}bool Coda : : Empty () const {return (nelem == 0) ;

SC. Soluzioni degli esercizi su code 105}void stampaMenu () ;void Push (Coda& c) ;void Top(Coda& c) ;void Pop(Coda& c) ;void PopMany(Coda& c) ;void Svuota (Coda& c) ;void Count (Coda& c) ;void Empty(Coda& c) ;int main (){ char c ;unsigned int i ;cout << " I n s e r i r e i l numero massimo d i e l ement i in coda : " ;c in >> i ;Coda coda (i) ;do {stampaMenu () ;c in >> c ;c in . i gnore () ;switch (c) {case ' 1 ' :Push (coda) ;break ;case ' 2 ' :Top(coda) ;break ;case ' 3 ' :Pop(coda) ;break ;case ' 4 ' :PopMany(coda) ;break ;case ' 5 ' :Svuota (coda) ;break ;case ' 6 ' :Count (coda) ;break ;case ' 7 ' :Empty(coda) ;break ;case ' 8 ' :break ;default :cout << " Sce l t a non va l i d a . \ n" ;break ;}} while (c != ' 8 ') ;return 0 ;}void stampaMenu () {cout << endl ;cout << " 1 . Push" << endl ;

SC. Soluzioni degli esercizi su code 106cout << " 2 . Top" << endl ;cout << " 3 . Pop" << endl ;cout << " 4 . PopMany" << endl ;cout << " 5 . Svuota" << endl ;cout << " 6 . Count" << endl ;cout << " 7 . Empty" << endl ;cout << " 8 . Esc i " << endl ;cout << endl ;cout << " Sce l t a : " ;}void Push (Coda& c) {TElem e l ;cout << " I n s e r i r e elemento : " ;c in >> e l ;i f (c . Push (e l))cout << "Elemento i n s e r i t o . \ n" ;elsecout << "Elemento NON i n s e r i t o . \ n" ;}void Top(Coda& c) {i f (! c . Empty ())cout << "Elemento d i t e s t a : " << c .Top () << endl ;elsecout << "Coda vuota . " << endl ;}void Pop(Coda& c) {i f (! c . Empty ())cout << "Elemento d i t e s t a : " << c . Pop () << endl ;elsecout << "Coda vuota . " << endl ;}void PopMany(Coda& c) {int i ;cout << "Quanti e l ement i e s t r a r r e ? " ;c in >> i ;i f (! c . Empty ())cout << "Elemento d i t e s t a : " << c . Pop (i) << endl ;elsecout << "Coda vuota . " << endl ;}void Svuota (Coda& c) {c . Svuota () ;cout << "Coda svuotata . \ n" ;}void Count (Coda& c) {cout << "Numero e l ement i : " << c . Count () << endl ;}void Empty(Coda& c) {i f (c . Empty ())cout << "True . " << endl ;elsecout << "Fa l s e . " << endl ;}

SC. Soluzioni degli esercizi su code 107SC.3 Coda a Priorità Traccia a pag. 33Si vuole una coda in cui gli elementi possano essere liberamente accodatie siano connotati da uno tra due possibili livelli di priorità. Il prelievo diun elemento dalla coda dovrà rispettare, in primis, il livello di priorità e,nell'ambito degli elementi aventi la stessa priorità, la disciplina �rst-in-�rst-out (FIFO) di una coda.La traccia speci�ca esclusivamente il comportamento �esteriore� dellastruttura dati, senza de�nire alcun dettaglio di natura implementativa. Perottenere una struttura avente il comportamento speci�cato è possibile seguirediverse strade. Di seguito sono riportate alcune possibilità.Approccio 1La coda a priorità può essere immaginata formata da una sequenza di ele-menti costituita a sua volta da due sotto-sequenze (vedi Figura SC.1):
• una prima sotto-sequenza, che parte dalla testa, che comprende glielementi a priorità alta;
• una successiva sotto-sequenza, che si estende �no alla coda, che com-prende gli elementi a priorità bassa.Una o entrambe queste sotto-sequenze possono in generale essere vuote.Dal momento che le operazioni di prelievo (Pop()) e di inserimento a bassapriorità (PushLow()) corrispondono in questo caso alle normali operazioniusate nel caso di una classica coda, l'unica operazione nuova da implementareconsiste nell'inserimento in coda di un elemento a priorità alta (PushHigh()).Tale operazione prevede l'aggiunta di un elemento �in coda� agli elementi apriorità alta. In quest'ottica risulta utile de�nire un puntatore h aggiuntivoposizionato sull'ultimo degli elementi a priorità alta. Tale nuovo puntatorepunterà alla coda degli elementi ad alta priorità, oppure varrà zero in casodi assenza di tali elementi.File PriorityQueue.htypedef int TElem ;struct Record ;typedef Record ∗ PRec ;class Prior i tyQueue {

SC. Soluzioni degli esercizi su code 108
ct

H H H H L L L L L

hFigura SC.1: Una sequenza di elementi formata da due sotto-sequenzeconsecutiveprivate :PRec head ;PRec t a i l ; // puntatore a l l a codaPRec ta i l_h ; // puntatore a l l a coda d e l l a so t tosequenza ad a l t a p r i o r i t àvoid Push (const TElem& e) ; // c l a s s i c o Push in codapublic :Pr ior i tyQueue () ;~Prior i tyQueue () ;void PushLow (const TElem& e) ;void PushHigh (const TElem& e) ;TElem Pop () ;void Clear () ;bool Empty () const ;} ; File PriorityQueue.cpp#include "Prior i tyQueue . h"typedef struct Record {TElem e l ;PRec succ ;} ;Pr ior i tyQueue : : Pr ior i tyQueue () : head (0) , t a i l (0) , ta i l_h (0) {}Prior i tyQueue : : ~ Prior i tyQueue () {Clear () ;}void Prior i tyQueue : : Push (const TElem& e) { // c l a s s i c o Push in coda//Creo un nuovo elemento n e l l ' heapPRec temp = new Record ;temp−>e l = e ;temp−>succ = 0 ;// se c ' è un elemento d i coda ques to deve puntare a l nuovo elementoi f (t a i l)t a i l−>succ = temp ;// in ogni caso l a coda punterà a l nuovo elementot a i l = temp ;// se l a t e s t a non punta ad un elemento , deve puntare a l nuovo elemento :// l a s t r u t t u ra , c ioè , era vuota a l momento d e l l ' inser imento

SC. Soluzioni degli esercizi su code 109i f (! head)head = temp ;}void Prior i tyQueue : : PushLow (const TElem& e) {Push (e) ; // s i r iduce ad un c l a s s i c o inser imento in coda}void Prior i tyQueue : : PushHigh (const TElem& e) {i f (! ta i l_h) {//non c i sono e l ement i ad a l t a p r i o r i t à : aggiunta in t e s t ai f (! head) // l a coda è vuota ?Push (e) ; // i n s e r i s c o con Push ()else {PRec temp = new Record ;temp−>e l = e ;temp−>succ = head ;head = temp ;}ta i l_h = head ; // l ' elemento i n s e r i t o è in t e s t a : ta i l_h deve puntarv i} else {// i n s e r i s c oPRec temp = new Record ;temp−>e l = e ;temp−>succ = tail_h−>succ ;tai l_h−>succ = temp ;ta i l_h = temp ; // aggiorno i l puntatore ta i l_h// aggiorno t a i l se l ' e lemento aggiunto è in ul t ima po s i z i onei f (! tai l_h−>succ)t a i l = tai l_h ;}}TElem Prior i tyQueue : : Pop () {i f (head) {PRec temp = head ;TElem el_temp = temp−>e l ;i f (head == tai l_h) //ho p r e l e va t o l ' unico elemento a p r i o r i t à a l t a ?ta i l_h = 0 ; // a l l o r a non ce ne sono più//head passa a puntare a l l ' e lemento succ e s s i v ohead = head−>succ ;// se non punta a n ien te vuo l e d i r e che l a coda conteneva un so l o elem .//anche t a i l qu ind i deve puntare a 0i f (! head) {t a i l = 0 ;ta i l_h = 0 ;}delete temp ;return el_temp ;}}

SC. Soluzioni degli esercizi su code 110
H H H H

L L L L L

t c

t c

SOTTO-CODA AD
ALTA PRIORITÀ

SOTTO-CODA A
BASSA PRIORITÀ

CODA A PRIORITÀ

Figura SC.2: Coda a priorità formata da due classiche code a�ancatevoid Prior i tyQueue : : Clear () {while (head != 0) {PRec tbd = head ;head = head−>succ ;delete tbd ;}head = t a i l = tai l_h = 0 ;}bool Prior i tyQueue : : Empty () const {return ! head ;}Approccio 2La coda a priorità può essere immaginata composta di due classiche codea�ancate (vedi Figura SC.2), ciascuna destinata a contenere gli elementi diuna singola classe. Il metodo PushLow() accoda nella coda a bassa priorità.Il metodo PushHigh(), viceversa, in quella ad alta priorità. Il metodo Pop()restituisce l'elemento di testa nella coda ad alta priorità, se esiste; in casocontrario restituisce l'elemento di testa nella coda a bassa priorità.Servendosi del meccanismo dell'aggregazione stretta tra classi, le due co-de a�ancate risultano istanze della classe Coda (vedi �EC.1). De�nendo taliistanze come membri privati della classe PriorityQueue esse non risulteran-no visibili dall'esterno della struttura (information hiding), la quale conti-nuerà ad apparire ai suoi utenti come una singola coda dotata dei meccanismidi priorità richiesti.#include "coda . h"class Prior i tyQueue {private :Coda coda_l ;Coda coda_h ;

SC. Soluzioni degli esercizi su code 111Prior i tyQueue (const Prior i tyQueue& c) ; // i n i b i s c e l a copia . . .Prior i tyQueue& operator=(const Prior i tyQueue& c) ; // . . e l ' a s segnaz ionepublic :Pr ior i tyQueue () ;void PushLow (const TElem& e) ;void PushHigh (const TElem& e) ;TElem Pop () ;void Clear () ;bool Empty () const ;} ;#include " p r i o r i t yqueue . h"void Prior i tyQueue : : PushLow (const TElem& e) {coda_l . Push (e) ;}void Prior i tyQueue : : PushHigh (const TElem& e) {coda_h . Push (e) ;}TElem Prior i tyQueue : : Pop () {i f (! coda_h .Empty ())return coda_h . Pop () ;elsereturn coda_l . Pop () ;}void Prior i tyQueue : : Clear () {coda_h . Svuota () ;coda_l . Svuota () ;}bool Prior i tyQueue : : Empty () const {return (coda_h .Empty () && coda_l .Empty ()) ;}Approccio 3La coda a priorità può essere una normale coda in cui i record, dispostisecondo l'ordine di inserimento, vengono etichettati con la loro priorità1 (ve-di Figura SC.3). In questo caso sia il metodo PushHigh() che il metodoPushLow(), previa opportuna etichettatura, e�ettuano un'aggiunta in coda.È il metodo Pop() in questo caso a prendersi carico della restituzione del�giusto� elemento. Tale operazione viene e�ettuata scorrendo tutta la strut-tura alla ricerca del primo elemento ad alta priorità e restituendolo dopoaverlo eliminato dalla coda. In assenza di un elemento ad alta priorità vienerestituito l'eventuale elemento di testa.1Questo è possibile previa de�nizione di un'opportuna struct che contenga un TElemed un bool indicante la relativa priorità.

SC. Soluzioni degli esercizi su code 112
L L H H L H L L H

ct

el el el el el el el el el

Figura SC.3: Sequenza di elementi �etichettati�Tale implementazione, pur prestandosi a diverse ottimizzazioni, non ri-sulta particolarmente e�ciente, richiedendo un ciclo di ricerca per ogni ope-razione Pop() e�ettuata. La sua implementazione non è qui riportata.SC.4 PopMinMax Traccia a pag. 34//Metodo p r i v a t o// I l metodo seguente e s t r a e n e l ement i e ne r e s t i t u i s c e i l min ed i l maxvoid Coda : : _PopMinMax(unsigned int n , TElem& min , TElem& max) {min = max = Pop () ; //Assegno min e max a l l ' e lemento d i t e s t aunsigned int i = 1 ;// confronto con g l i a l t r i n−1 e l ement i s e guen t i : n−1 i t e r a z i o n i// (se l a coda non s i svuota prima)while ((i < n) && !Empty ()) {TElem e l = Pop () ;i f (e l < min)min = e l ;i f (e l > max)max = e l ;i++;}}//Metodi p u b b l i c i// I l metodo seguente chiama _PopMinMax() e r e s t i t u i s c e i l massimoTElem Coda : : PopMax(unsigned int n) {TElem min , max ;_PopMinMax(n , min , max) ;return max ;}// I l metodo seguente chiama _PopMinMax() e r e s t i t u i s c e i l minimoTElem Coda : : PopMin(unsigned int n) {TElem min , max ;_PopMinMax(n , min , max) ;return min ;}

Capitolo SXSoluzioni degli altri esercizi
SX.1 Accumulatore Traccia a pag. 36#include <iostream>using namespace std ;class Accumulatore {private :f loat a ;public :Accumulatore () { Reset () ; } ;void Add(f loat va l) { a += va l ; } ;void Reset () { a = 0 ; } ;f loat GetValue () const { return a ; } ;} ;int main (){ Accumulatore a ;f loat f ;char ch ;cout << " ' a ' add\n" ;cout << " ' r ' r e s e t \n" ;cout << " ' s ' show\n" ;cout << " ' e ' e x i t \n" ;do {c in >> ch ;switch (ch) {case ' a ' :cout << " I n s e r t value : " ;c in >> f ;a .Add(f) ;cout << "Value added . \ n" ;break ;case ' r ' :a . Reset () ;cout << "Reset . \ n" ; 113

SX. Soluzioni degli altri esercizi 114break ;case ' s ' :cout << "The value i s " << a . GetValue () << endl ;break ;case ' e ' :break ;default :cout << " Inva l i d command. \ n" ;}} while (ch != ' e ') ;return 0 ;} In questo esercizio i metodi della classe Accumulatore vengono imple-mentati direttamente nell'ambito del costrutto class. Questa tecnica è par-ticolarmente conveniente nel caso di metodi molto semplici (come questi co-stituiti da una sola riga), ed è equivalente a rendere i metodi inline attraversol'approccio classico alla stesura dei metodi di una classe e l'uso della keywordinline.SX.2 Cifratore Traccia a pag. 36#include <iostream>#include <s t d l i b . h>using namespace std ;class Ci f r a t o r e {private :int ch iave ;char Ci f r aCa ra t t e r e (char c , bool c i f r a) const ;public :C i f r a t o r e (int c) ;void Ci f ra (char∗ s t r) const ;void Dec i f ra (char∗ s t r) const ;} ;C i f r a t o r e : : C i f r a t o r e (int c) : ch iave (c) {}char Ci f r a t o r e : : C i f r aCa ra t t e r e (char c , bool c i f r a) const {i f (c i f r a)return c + ch iave ;elsereturn c − ch iave ;}void Ci f r a t o r e : : C i f ra (char∗ s t r) const{while (∗ s t r) {
∗ s t r = C i f r aCa ra t t e r e (∗ s t r , true) ;s t r++;}}

SX. Soluzioni degli altri esercizi 115void Ci f r a t o r e : : Dec i f ra (char∗ s t r) const {while (∗ s t r) {
∗ s t r = C i f r aCa ra t t e r e (∗ s t r , fa l se) ;s t r++;}}int main (){ char s t r [1 0 0] ;int ch iave ;cout << " I n s e r i s c i l a paro la da c i f r a r e : " ;c in >> s t r ;cout << " I n s e r i s c i l a ch iave d i c i f r a t u r a : " ;c in >> ch iave ;C i f r a t o r e c (ch iave) ;cout << " Str inga : " << s t r << endl ;c . C i f ra (s t r) ;cout << " C i f r a tu r a : " << s t r << endl ;c . Dec i f ra (s t r) ;cout << "Dec i f r a tu r a : " << s t r << endl ;system ("PAUSE") ;return 0 ;}SX.3 Lista Della Spesa Traccia a pag. 37#include <iostream>using namespace std ;const int MAX_CHARS = 20 ;typedef char Nome[MAX_CHARS] ;typedef f loat Quantita ;struct Art i c o l o {Nome n ;Quantita q ;} ;struct Record ;typedef Record ∗ PRec ;struct Record {Ar t i c o l o a r t ;PRec succ ;} ;class Li s taDe l l aSpesa {private :PRec f i r s t ;bool Ricerca (const Nome n , PRec& p) const ;

SX. Soluzioni degli altri esercizi 116bool _Elimina(PRec& p , const Nome n) ;bool Str ingheUgua l i (const char∗ s1 , const char∗ s2) const {return (strcmp (s1 , s2) == 0) ;}// i n i b i s c e l a copia mediante c o s t r u t t o r eLi s taDe l l aSpesa (const Li s taDe l l aSpesa &) {} ;// i n i b i s c e l a copia mediante assegnaz ionevoid operator= (const Li s taDe l l aSpesa &) {} ;public :L i s taDe l l aSpesa () ;~L i s taDe l l aSpesa () ;Quantita Aggiungi (const Nome n , Quantita q) ;bool Elimina (const Nome n) ;Quantita GetQuantita (const Nome n) const ;void Svuota () ;void Stampa () const ;} ;L i s taDe l l aSpesa : : L i s taDe l l aSpesa () : f i r s t (0) {}L i s taDe l l aSpesa : : ~ L i s taDe l l aSpesa () {Svuota () ;}bool Li s taDe l l aSpesa : : Ricerca (const Nome n , PRec& p) const {//Questo metodo cerca l ' a r t i c o l o avente i l nome s p e c i f i c a t o e r e s t i t u i s c e :// − t rue o f a l s e , a seconda che l ' a r t i c o l o s i a s t a t o t r o va t o o meno ;// − i l puntatore a l l ' u l t imo record v i s i t a t o .i f (f i r s t) {p = f i r s t ;i f (S t r ingheUgua l i (p−>art . n , n))return true ;else {while (p−>succ) {p = p−>succ ;i f (S t r ingheUgua l i (p−>art . n , n))return true ;}}}return fa lse ;}bool Li s taDe l l aSpesa : : _Elimina(PRec& p , const Nome n) {//metodo r i c o r s i v o d i e l iminaz ione d i un elemento d a l l a l i s t ai f (p) {i f (S t r ingheUgua l i (p−>art . n , n)) {PRec tbd = p ;p = tbd−>succ ;delete tbd ;return true ;}elsereturn _Elimina(p−>succ , n) ;}return fa lse ;}

SX. Soluzioni degli altri esercizi 117Quantita L i s taDe l l aSpesa : : Aggiungi (const Nome n , Quantita q) {i f (! f i r s t) {f i r s t = new Record ;f i r s t −>succ = 0 ;s t r cpy (f i r s t −>art . n , n) ;f i r s t −>art . q = q ;return q ;}else {PRec p ;i f (Ricerca (n , p)) { // e s i s t e n e l l a l i s t a un elemento avente i l nome n?// t r o va t o => ora p punta a l l ' e lemento avente nome np−>art . q += q ;}else {//non t r o va t o => ora p punta a l l ' u l t imo elemento d e l l a l i s t ap−>succ = new Record ;p = p−>succ ;s t r cpy (p−>art . n , n) ;p−>art . q = q ;p−>succ = 0 ;}return p−>art . q ;}}bool Li s taDe l l aSpesa : : Elimina (const Nome n) {return _Elimina(f i r s t , n) ;}Quantita L i s taDe l l aSpesa : : GetQuantita (const Nome n) const {PRec p ;i f (Ricerca (n , p))return p−>art . q ;elsereturn 0 ;}void Li s taDe l l aSpesa : : Svuota () {i f (f i r s t) {PRec tbd = f i r s t ;PRec p ;while (tbd) {p = tbd−>succ ;delete tbd ;tbd = p ;}}f i r s t = 0 ;}void Li s taDe l l aSpesa : : Stampa () const {PRec p = f i r s t ;while (p) {cout << p−>art . n << " : " << p−>art . q << endl ;p = p−>succ ;}}

SX. Soluzioni degli altri esercizi 118void stampa_menu() {cout << " 1 : Aggiungi a r t i c o l o . \ n" ;cout << " 2 : Elimina a r t i c o l o . \ n" ;cout << " 3 : Quantita ' a r t i c o l o . \ n" ;cout << " 4 : Svuota l i s t a . \ n" ;cout << " 5 : Stampa l i s t a . \ n" ;cout << " 6 : Esegui t e s t v e l o c e . \ n" ;cout << " 7 : Esc i . \ n" ;}void Aggiungi (L i s taDe l l aSpesa& l) ;void Elimina (L i s taDe l l aSpesa& l) ;void GetQuantita (L i s taDe l l aSpesa& l) ;void Svuota (L i s taDe l l aSpesa& l) ;void Stampa(L i s taDe l l aSpesa& l) ;void TestVeloce (L i s taDe l l aSpesa& l) ;int main (){ L i s taDe l l aSpesa l ;int s c e l t a ;do {stampa_menu() ;c in >> s c e l t a ;switch (s c e l t a) {case 1 :Aggiungi (l) ;break ;case 2 :Elimina (l) ;break ;case 3 :GetQuantita (l) ;break ;case 4 :Svuota (l) ;break ;case 5 :Stampa(l) ;break ;case 6 :TestVeloce (l) ;break ;case 7 :break ;default :cout << " Sce l t a non va l i d a . \ n" ;break ;}} while (s c e l t a != 7) ;return 0 ;}void Aggiungi (L i s taDe l l aSpesa& l) {Nome n ;Quantita q , qq ;cout << "Nome a r t i c o l o : " ;c in >> n ;cout << "Quantita ' : " ;

SX. Soluzioni degli altri esercizi 119c in >> q ;qq = l . Aggiungi (n , q) ;cout << "Ora l a quant i ta ' e ' " << qq << endl ;}void Elimina (L i s taDe l l aSpesa& l) {Nome n ;cout << "Nome a r t i c o l o : " ;c in >> n ;i f (l . Elimina (n))cout << "Ar t i c o l o e l iminato . " << endl ;elsecout << "Ar t i c o l o non e l iminato . " << endl ;}void GetQuantita (L i s taDe l l aSpesa& l) {Nome n ;Quantita q ;cout << "Nome a r t i c o l o : " ;c in >> n ;q = l . GetQuantita (n) ;cout << "La quant i ta ' e ' " << q << endl ;}void Svuota (L i s taDe l l aSpesa& l) {l . Svuota () ;cout << " L i s t a svuotata . " << endl ;}void Stampa(L i s taDe l l aSpesa& l) {cout << " L i s t a : " << endl ;l . Stampa () ;}void TestVeloce (L i s taDe l l aSpesa& l) {l . Svuota () ;l . Aggiungi ("Pane" , 1) ;l . Aggiungi (" Latte " , 1 . 5) ;l . Aggiungi ("Zucchero" , 1) ;l . Aggiungi (" Prosc iu t to " , 0 . 3) ;l . Stampa () ;cout << "Latte : " << l . Aggiungi (" Latte " , 0 . 5) << endl ;l . Elimina ("Pane") ;l . Elimina ("Zucchero ") ;l . Elimina (" Prosc iu t to ") ;cout << "Latte : " << l . Aggiungi (" Latte " , 0 . 5) << endl ;l . Svuota () ;l . Stampa () ;}SX.4 Predittore di Temperatura Traccia a pag. 38Il metodo EstimateTemp() deve e�ettuare un'estrapolazione lineare dellatemperatura basandosi sui dati delle ultime due letture comunicate. Laformula da utilizzare è la seguente:

SX. Soluzioni degli altri esercizi 120
T̂ =

T2 − T1

t2 − t1
(t − t1) + T1;dove T̂ è la stima della temperatura all'istante t; T1, T2, t1 e t2 sonole ultime due letture della temperatura ed i relativi due istanti di lettura,rispettivamente.N.B.: Variando l'implementazione del metodo EstimateTemp() (ed eventualmente lasezione private della classe) diviene possibile operare stime più accurate della temperatu-ra; si potrebbe per esempio pensare di operare estrapolazioni di ordine superiore al primo.Per giunta ciò, non alterando l'interfaccia della classe, non avrebbe alcuna ripercussionesui moduli utenti del predittore.#include <iostream>#include <s t d l i b . h>using namespace std ;typedef int Time ;typedef f loat Temp;class TempPredictor {private :Time time1 ;Time time2 ;Temp temp1 ;Temp temp2 ;public :TempPredictor (Time time , Temp temp) ;void SetTemp (Time time , Temp temp) ;Temp EstimateTemp(Time time) const ;} ;TempPredictor : : TempPredictor (Time time , Temp temp) :time1 (time −1) , t ime2 (time) , temp1 (temp) , temp2 (temp) {// Impostare in ques to modo l e temp . ed i tempi s i g n i f i c a imporre che l e// u l t ime _due_ l e t t u r e d e l l a temperatura hanno f o r n i t o un r i s u l t . par i a temp//e su ques te u l t ime due l e t t u r e bisogna e s t r apo l a r e l a stima .}void TempPredictor : : SetTemp (Time time , Temp temp) {time1 = time2 ; //" spos ta " l ' u l t ima l e t t u r a n e l l a penultimatemp1 = temp2 ;time2 = time ; // aggiorna l ' u l t ima l e t t u r a con i da t i proven . d a l l ' u ten tetemp2 = temp ;}Temp TempPredictor : : EstimateTemp(Time time) const {return ((temp2−temp1)/(time2−time1))∗ (time−time1) + temp1 ;}int main (){ cout << "Lettura : a l l ' i s t a n t e 0 : l a temperatura va l e 14\n" ;

SX. Soluzioni degli altri esercizi 121//Posso c o s t r u i r e i l p r e d i t t o r e con q u e s t i d a t i .TempPredictor tp (0 , 1 4) ;cout << "Stima : l a temperatura a l l ' i s t a n t e 10 sara ' "<< tp . EstimateTemp (10) << endl ;cout << "Stima : l a temperatura a l l ' i s t a n t e 20 sara ' "<< tp . EstimateTemp (20) << endl ;cout << "Lettura : a l l ' i s t a n t e 5 : l a temperatura va l e 16\n" ;//Comunico l a l e t t u r a a l p r e d i t t o r etp . SetTemp (5 , 1 6) ;cout << "Stima : l a temperatura a l l ' i s t a n t e 10 sara ' "<< tp . EstimateTemp (10) << endl ;cout << "Stima : l a temperatura a l l ' i s t a n t e 12 sara ' "<< tp . EstimateTemp (12) << endl ;cout << "Lettura : a l l ' i s t a n t e 10 : l a temperatura va l e 16\n" ;//Comunico l a l e t t u r a a l p r e d i t t o r etp . SetTemp (10 , 1 6) ;cout << "Stima : l a temperatura a l l ' i s t a n t e 15 sara ' "<< tp . EstimateTemp (15) << endl ;cout << "Stima : l a temperatura a l l ' i s t a n t e 20 sara ' "<< tp . EstimateTemp (20) << endl ;system ("PAUSE") ;return 0 ;}SX.5 Contenitore Traccia a pag. 39#include <iostream>using namespace std ;const int NMAX = 50 ;typedef char Nome[NMAX] ;typedef int Peso ; // s i t r a t t i i l peso come va l o r e in t e r o (p . es . grammi)struct Oggetto {Nome n ;Peso p ;} ;struct Cel la ;typedef Cel la ∗ PCella ;struct Cel la {Oggetto elem ;PCella succ ;} ;class Contenitore {

SX. Soluzioni degli altri esercizi 122private :PCella f i r s t ;Peso capac i ta ;Peso somma_pesi ;unsigned int nelem ;public :Contenitore (Peso max) ;~Contenitore () ;bool I n s e r i s c i (char∗ n , Peso p) ;void Svuota () ;Peso PesoComplessivo () const ;Peso PesoResiduo () const ;unsigned int NumElem() const ;void Stampa () const ;} ;Contenitore : : Contenitore (Peso max) : f i r s t (0) , capac i ta (max) ,somma_pesi (0) , nelem (0) {}Contenitore : : ~ Contenitore () {Svuota () ;}bool Contenitore : : I n s e r i s c i (char∗ n , Peso p) {i f (p <= capac i ta − somma_pesi) {PCella c = new Cel la ;s t r cpy (c−>elem . n , n) ;c−>elem . p = p ;c−>succ = f i r s t ;f i r s t = c ;somma_pesi = somma_pesi + p ; // i l c on t en i t o r e è ora più pesante d i p . . .nelem++; // . . . e c ' è un elemento in più .return true ;}return fa lse ;}void Contenitore : : Svuota () {while (f i r s t) {PCella tbd = f i r s t ;f i r s t = f i r s t −>succ ;delete tbd ;}somma_pesi = 0 ;nelem = 0 ;}Peso Contenitore : : PesoComplessivo () const {return somma_pesi ;}Peso Contenitore : : PesoResiduo () const {return capac i ta − somma_pesi ;}unsigned int Contenitore : : NumElem() const {

SX. Soluzioni degli altri esercizi 123return nelem ;}void Contenitore : : Stampa () const {PCella p = f i r s t ;while (p) {cout << p−>elem . n << " , " << p−>elem . p << endl ;p = p−>succ ;}}void I n s e r i s c i (Contenitore& c) ;void Svuota (Contenitore& c) ;void PesoComplessivo (Contenitore& c) ;void PesoResiduo (Contenitore& c) ;void NumeroElementi (Contenitore& c) ;void Stampa(Contenitore& c) ;void stampa_menu() {cout << " 1 : I n s e r i s c i . \ n" ;cout << " 2 : Svuota . \ n" ;cout << " 3 : Peso Complessivo . \ n" ;cout << " 4 : Peso Residuo . \ n" ;cout << " 5 : Numero Elementi . \ n" ;cout << " 6 : Stampa . \ n" ;cout << " 7 : Esc i . \ n" ;}int main (){ Peso p ;cout << " I n s e r i s c i peso MAX con t en i t o r e : " ;c in >> p ;Contenitore c (p) ;int s c e l t a ;do {stampa_menu() ;c in >> s c e l t a ;switch (s c e l t a) {case 1 :I n s e r i s c i (c) ;break ;case 2 :Svuota (c) ;break ;case 3 :PesoComplessivo (c) ;break ;case 4 :PesoResiduo (c) ;break ;case 5 :NumeroElementi (c) ;break ;case 6 :Stampa(c) ;break ;case 7 :break ;default :cout << " Sce l t a non va l i d a . \ n" ;

SX. Soluzioni degli altri esercizi 124break ;}} while (s c e l t a != 7) ;return 0 ;}void I n s e r i s c i (Contenitore& c) {char n [NMAX] ;Peso p ;cout << " I n s e r i s c i nome elemento : " ;c in >> n ;cout << " I n s e r i s c i peso elemento : " ;c in >> p ;i f (c . I n s e r i s c i (n , p))cout << "Elemento i n s e r i t o . \ n" ;elsecout << "Elemento NON i n s e r i t o . \ n" ;}void Svuota (Contenitore& c) {c . Svuota () ;cout << "Contenitore svuotato . \ n" ;}void PesoComplessivo (Contenitore& c) {cout << " I l peso comple s s ivo e ' : " << c . PesoComplessivo () << endl ;}void PesoResiduo (Contenitore& c) {cout << " I l peso r e s i duo e ' : " << c . PesoResiduo () << endl ;}void NumeroElementi (Contenitore& c) {cout << "N. Elem : " << c .NumElem() << endl ;}void Stampa(Contenitore& c) {cout << " I l contenuto de l c on t en i t o r e e ' : \ n" ;c . Stampa () ;cout << endl ;}SX.6 Lista Prenotazioni Traccia a pag. 41#include <iostream>using namespace std ;const int MAX_CHARS = 20 ;typedef int Matr i co la ;typedef char Nome [3 0] ;struct Prenotaz ione {Matr i co la mat ;

SX. Soluzioni degli altri esercizi 125Nome nom;} ;class L i s t aPr eno t a z i on i {private :Prenotaz ione ∗ pv ; // puntatore a v e t t o r e prenotaz . dinamicam . a l l o c a t oint po s t i ; //numero d i p o s t i d i s p o n i b i l iint nelem ; // riempimento de l v e t t o r eint Ricerca (Matr i co la m) const ;public :L i s t aP r eno t a z i on i (int n) ;~L i s t aPr eno t a z i on i () ;bool Prenota (Matr i co la m, Nome n) ;bool EliminaPrenotaz ione (Matr i co la m) ;int GetPo s t iD i spon ib i l i () const ;bool Es i s t ePrenot a z ion e (Matr i co la m) const ;void Svuota () ;void Stampa () ;} ;L i s t aP r eno t a z i on i : : L i s t aP r eno t a z i on i (int n) : po s t i (n) , nelem (0) {pv = new Prenotaz ione [po s t i] ;}L i s t aP r eno t a z i on i : : ~ L i s t aPr eno t a z i on i () {delete [] pv ;}int L i s t aPr eno t a z i on i : : Ricerca (Matr i co la m) const {for (int i = 0 ; i < nelem ; i++)i f (pv [i] . mat == m)return i ;return −1;}bool L i s t aPr eno t a z i on i : : Prenota (Matr i co la m, Nome n) {i f ((Ge tPo s t iD i spon ib i l i () > 0) && (! Es i s t ePrenot az ione (m))) {pv [nelem] . mat = m;s t r cpy (pv [nelem] . nom, n) ;nelem++;return true ;}return fa lse ;}bool L i s t aPr eno t a z i on i : : El iminaPrenotaz ione (Matr i co la m) {int i = Ricerca (m) ;i f (i >= 0) {for (int j = i ; j < nelem − 1 ; j++)pv [j] = pv [j +1] ;nelem−−;return true ;}

SX. Soluzioni degli altri esercizi 126return fa lse ;}int L i s t aPr eno t a z i on i : : Ge tPo s t iD i spon ib i l i () const {return po s t i − nelem ;}bool L i s t aPr eno t a z i on i : : Es i s t ePrenot az ione (Matr i co la m) const {return (Ricerca (m) >= 0) ;}void L i s t aPr eno t a z i on i : : Svuota () {nelem = 0 ;}void L i s t aPr eno t a z i on i : : Stampa () {for (int i = 0 ; i < nelem ; i++)cout << pv [i] . mat << " : " << pv [i] . nom << endl ;cout << endl ;}void stampa_menu() {cout << " 1 : Prenota . \ n" ;cout << " 2 : Elimina prenotaz ione . \ n" ;cout << " 3 : Pos t i d i s p o n i b i l i . \ n" ;cout << " 4 : Es i s t e Prenotaz ione . \ n" ;cout << " 5 : Svuota . \ n" ;cout << " 6 : Stampa . \ n" ;cout << " 7 : Esc i . \ n" ;}void Prenota (L i s t aP r eno t a z i on i& l) ;void Elimina (L i s t aP r eno t a z i on i& l) ;void GetPo s t iD i spon ib i l i (L i s t aP r eno t a z i on i& l) ;void Es i s t ePrenot a z ione (L i s t aP r eno t a z i on i& l) ;void Svuota (L i s t aP r eno t a z i on i& l) ;void Stampa(L i s t aPr eno t a z i on i& l) ;int main (){ int n ;cout << " I n s e r i r e i l numero d i po s t i d i s p o n i b i l i : " ;c in >> n ;L i s t aPr eno t a z i on i l (n) ;int s c e l t a ;do {stampa_menu() ;c in >> s c e l t a ;switch (s c e l t a) {case 1 :Prenota (l) ;break ;case 2 :Elimina (l) ;break ;case 3 :Ge tPo s t iD i spon ib i l i (l) ;break ;case 4 :

SX. Soluzioni degli altri esercizi 127Es i s t ePrenot a z ione (l) ;break ;case 5 :Svuota (l) ;break ;case 6 :Stampa(l) ;break ;case 7 :break ;default :cout << " Sce l t a non va l i d a . \ n" ;break ;}} while (s c e l t a != 7) ;return 0 ;}void Prenota (L i s t aP r eno t a z i on i& l) {Matr i co la m;Nome n ;cout << " I n s e r i s c i Matr i co la : " ;c in >> m;cout << " I n s e r i s c i nome : " ;c in >> n ;i f (l . Prenota (m, n))cout << "Prenotaz ione e f f e t t u a t a . \ n" ;elsecout << "Prenotaz ione non e f f e t t u a t a . \ n" ;}void Elimina (L i s t aP r eno t a z i on i& l) {Matr i co la m;cout << " I n s e r i s c i Matr i co la : " ;c in >> m;i f (l . El iminaPrenotaz ione (m))cout << "Prenotaz ione e l iminata . \ n" ;elsecout << "Prenotaz ione non e l iminata . \ n" ;}void GetPo s t iD i spon ib i l i (L i s t aP r eno t a z i on i& l) {cout << " I po s t i d i s p o n i b i l i sono : " ;cout << l . Ge tPo s t iD i spon ib i l i () << endl ;}void Es i s t ePrenot a z ione (L i s t aP r eno t a z i on i& l) {Matr i co la m;cout << " I n s e r i s c i Matr i co la : " ;c in >> m;i f (l . Es i s t ePrenot a z ione (m))cout << "Prenotaz ione e s i s t e n t e . \ n" ;elsecout << "Prenotaz ione non e s i s t e n t e . \ n" ;}

SX. Soluzioni degli altri esercizi 128void Svuota (L i s t aP r eno t a z i on i& l) {l . Svuota () ;cout << " L i s t a svuotata . \ n" ;}void Stampa(L i s t aPr eno t a z i on i& l) {l . Stampa () ;}SX.7 Classi�ca Traccia a pag. 42#include <iostream>#include <s t r i n g . h>using namespace std ;const int NMAX = 50 ;typedef char Nome[NMAX] ;struct Record ;typedef Record ∗ PRec ;typedef struct {Nome n ;unsigned int punteggio ;} Squadra ;typedef Squadra TElem ;struct Record { // S ingo lo elemento (c e l l a) d e l l a s t r u t t u r aTElem e l ;PRec succ ;} ;class C l a s s i f i c a {private :PRec f i r s t ;unsigned int nelem ;C l a s s i f i c a (const C l a s s i f i c a &); // i n i b i s c e l a copia mediante c o s t r u t t o r evoid operator= (const C l a s s i f i c a &); // i n i b i s c e l ' a s segnaz ioneunsigned int Elimina (const Nome& n) ;void Inser imentoOrdinato (const Nome& n , unsigned int punt i) ;public :C l a s s i f i c a () ;~C l a s s i f i c a () ;unsigned int Aggiungi (const Nome& n , unsigned int punt i) ;void Svuota () ;void Stampa () const ;unsigned int Count () const ;} ;C l a s s i f i c a : : C l a s s i f i c a () : f i r s t (0) , nelem (0) {

SX. Soluzioni degli altri esercizi 129}C l a s s i f i c a : : ~ C l a s s i f i c a () {Svuota () ;}unsigned int C l a s s i f i c a : : Elimina (const Nome& n) {//Questo metodo e l imina d a l l a s t r u t t u r a un eventua l e elem . avente nome par i//ad n . In caso d i e s i s t e n z a ne r e s t i t u i s c e i l punteggio , a l t r imen t i// r e s t i t u i s c e 0 .//E ' i l primo elemento? (Caso p a r t i c o l a r e)i f (f i r s t && (strcmp (f i r s t −>e l . n , n) == 0)) {PRec tbd = f i r s t ;f i r s t = f i r s t −>succ ;unsigned int punt i = tbd−>e l . punteggio ;delete tbd ;nelem−−;return punt i ;}//E ' un elemento succ e s s i v o a l primo?PRec p = f i r s t ;while (p && p−>succ) {// c on t r o l l o se i l s u c c e s s i v o d i p deve e s s e r e e l imina toi f (strcmp (p−>succ−>e l . n , n) == 0) {PRec tbd = p−>succ ;p−>succ = tbd−>succ ;unsigned int punt i = tbd−>e l . punteggio ;delete tbd ;nelem−−;return punt i ;}p = p−>succ ;}//Elemento non t r o va t oreturn 0 ;}void C l a s s i f i c a : : Inser imentoOrdinato (const Nome& n , unsigned int punt i) {//Questo metodo e f f e t t u a un inser imento ord ina to n e l l a s t r u t t u ra , in base a l//campo puntegg io . Si procede a t t r a v e r s o i s e guen t i pa s s i :// − se l a l i s t a è vuota s i i n s e r i s c e l ' e lemento e s i esce ;// − s i c o n t r o l l a se i n s e r i r e in t e s t a : se s ì , s i i n s e r i s c e e s i esce ;// − s i cerca i l punto d i inser imento a t t r a v e r s o una v i s i t a , s i i n s e r i s c e// (eventua lmente in coda) e s i esce .// In ogni caso a l l o c o un nuovo recordPRec nuovo = new Record ;s t r cpy (nuovo−>e l . n , n) ;nuovo−>e l . punteggio = punt i ;nelem++;i f (! f i r s t) { //Se l a l i s t a è vuotaf i r s t = nuovo ; // In s e r i s c o a l l a t e s t anuovo−>succ = 0 ;} else {//Se i l puntegg io d e l l a nuova squadra è maggiore d e l l a t e s t ai f (punt i >= f i r s t −>e l . punteggio) {nuovo−>succ = f i r s t ; // In s e r i s c o in t e s t a

SX. Soluzioni degli altri esercizi 130f i r s t = nuovo ;} else { //Devo cercare i l punto d i i n s e r z i onePRec p = f i r s t ;while (p && p−>succ) {//Devo i n s e r i r e dopo l ' elemento puntato da p?i f (punt i >= p−>succ−>e l . punteggio) {nuovo−>succ = p−>succ ;p−>succ = nuovo ;return ;}p = p−>succ ;}//Se sono qui , non ho ancora i n s e r i t o : inser im . in coda , a l l a qua l e punta pp−>succ = nuovo ;nuovo−>succ = 0 ;}}}unsigned int C l a s s i f i c a : : Aggiungi (const Nome& n , unsigned int punt i) {unsigned int p = Elimina (n) ; //Elimina d a l l a l i s t a l ' e lemento (se e s i s t e)Inser imentoOrdinato (n , punt i + p) ; //Lo (re) i n s e r i s c e a l posto g i u s t oreturn punt i + p ; // Re s t i t u i s c e i l g i u s t o puntegg io}void C l a s s i f i c a : : Svuota () {while (f i r s t) {PRec tbd = f i r s t ;f i r s t = f i r s t −>succ ;delete tbd ;}nelem = 0 ;}void C l a s s i f i c a : : Stampa () const {PRec p = f i r s t ;while (p) {cout << p−>e l . n << " : " << p−>e l . punteggio << endl ;p = p−>succ ;}}unsigned int C l a s s i f i c a : : Count () const {return nelem ;}void stampa_menu() {cout << " 1 : I n s e r i s c i . \ n" ;cout << " 2 : Svuota . \ n" ;cout << " 3 : Stampa . \ n" ;cout << " 4 : Count . \ n" ;cout << " 5 : Esc i . \ n" ;}void Aggiungi (C l a s s i f i c a& l) ;void Svuota (C l a s s i f i c a& l) ;void Stampa(C l a s s i f i c a& l) ;void Count (C l a s s i f i c a& l) ;

SX. Soluzioni degli altri esercizi 131int main (){ C l a s s i f i c a l ;int s c e l t a ;do {stampa_menu() ;c in >> s c e l t a ;switch (s c e l t a) {case 1 :Aggiungi (l) ;break ;case 2 :Svuota (l) ;break ;case 3 :Stampa(l) ;break ;case 4 :Count (l) ;break ;case 5 :break ;default :cout << " Sce l t a non va l i d a . \ n" ;break ;}} while (s c e l t a != 5) ;return 0 ;}void Aggiungi (C l a s s i f i c a& l) {Nome n ;unsigned int punt i ;cout << " I n s e r i s c i nome : " ;c in >> n ;cout << " I n s e r i s c i punt i : " ;c in >> punti ;cout << "La squadra " << n << " ora ha punt i : " << l . Aggiungi (n , punt i) << " . \ n" ;}void Svuota (C l a s s i f i c a& l) {l . Svuota () ;cout << " C l a s s i f i c a svuotata . \ n" ;}void Stampa(C l a s s i f i c a& l) {l . Stampa () ;cout << endl ;}void Count (C l a s s i f i c a& l) {cout << " I l numero d i e l ement i e ' : " << l . Count () << endl ;}

SX. Soluzioni degli altri esercizi 132SX.8 Agenzia Matrimoniale Traccia a pag. 43#include <iostream>using namespace std ;const int NMAX = 50 ;typedef char Nome[NMAX] ; //Nome Personastruct persona ;typedef struct Persona {Nome n ;bool maschio ;Persona ∗ coniuge ;} ;typedef Persona TElem ;struct Record ;typedef Record ∗ PRec ;struct Record { // S ingo lo elemento (c e l l a) d e l l a s t r u t t u r aTElem e l ;PRec succ ;} ;class AgenziaMatrimoniale {private :PRec f i r s t ;AgenziaMatrimoniale (const AgenziaMatrimoniale &); // i n i b i s c e l a copia da co s t r .void operator= (const AgenziaMatrimoniale &); // i n i b i s c e l ' a s segnaz ionePRec Cerca (Nome n) const ;public :AgenziaMatrimoniale () ;~AgenziaMatrimoniale () ;bool AggiungiPersona (Nome n , bool s e s s o) ;bool Sposa (Nome n1 , Nome n2) ;bool Coniugato (Nome n , bool& coniugato) const ;unsigned int NumeroSposi () const ;unsigned int NumeroCoppie () const ;void Svuota () ;void Stampa () const ;} ;AgenziaMatrimoniale : : AgenziaMatrimoniale () : f i r s t (0) {}AgenziaMatrimoniale : : ~ AgenziaMatrimoniale () {Svuota () ;}PRec AgenziaMatrimoniale : : Cerca (Nome n) const {//Cerca n e l l a l i s t a l a persona avente i l nome s p e c i f i c a t o// Re s t i t u i s c e i l puntatore a l l a corr i spondente c e l l a se e s i s t e , 0 a l t r im .PRec p = f i r s t ;while (p) {i f (strcmp (p−>e l . n , n) == 0)

SX. Soluzioni degli altri esercizi 133return p ;p = p−>succ ;}return 0 ;}bool AgenziaMatrimoniale : : AggiungiPersona (Nome n , bool maschio) {i f (Cerca (n))return fa lse ;// Inserimento in t e s t aPRec p = new Record ;s t r cpy (p−>e l . n , n) ;p−>e l . maschio = maschio ;p−>e l . coniuge = 0 ;p−>succ = f i r s t ;f i r s t = p ;return true ;}bool AgenziaMatrimoniale : : Sposa (Nome n1 , Nome n2) {PRec p1 = Cerca (n1) ;// se i l primo nome non è s t a t o t r o va t o r e s t i t u i s c e f a l s ei f (! p1)return fa lse ;PRec p2 = Cerca (n2) ;// se i l secondo nome non è s t a t o t r o va t o r e s t i t u i s c e f a l s ei f (! p2)return fa lse ;// se i due nomi sono ugua l i r e s t i t u i s c e f a l s ei f (p1 == p2)return fa lse ;// se i l s e s so è uguale r e s t i t u i s c e f a l s ei f (p1−>e l . maschio == p2−>e l . maschio)return fa lse ;// se una d e l l e due persone è g ià sposa ta r e s t i t u i s c e f a l s ei f (p1−>e l . coniuge | | p2−>e l . coniuge)return fa lse ;p1−>e l . coniuge = &p2−>e l ;p2−>e l . coniuge = &p1−>e l ;return true ;}bool AgenziaMatrimoniale : : Coniugato (Nome n , bool& coniugato) const {PRec p = Cerca (n) ;i f (! p)return fa lse ;coniugato = (p−>e l . coniuge != 0) ;return true ;}unsigned int AgenziaMatrimoniale : : NumeroSposi () const {

SX. Soluzioni degli altri esercizi 134unsigned int count = 0 ;PRec p = f i r s t ;while (p) {i f (p−>e l . coniuge != 0)count++;p = p−>succ ;}return count ;}unsigned int AgenziaMatrimoniale : : NumeroCoppie () const {return NumeroSposi () / 2 ;}void AgenziaMatrimoniale : : Svuota () {while (f i r s t) {PRec tbd = f i r s t ;f i r s t = f i r s t −>succ ;delete tbd ;}}void AgenziaMatrimoniale : : Stampa () const {PRec p = f i r s t ;while (p) {cout << p−>e l . n << " (" ;i f (p−>e l . maschio)cout << 'M' ;elsecout << 'F ' ;cout << ") ; " ;i f (p−>e l . coniuge)cout << " coniuge : " << p−>e l . coniuge−>n << " . " ;cout << endl ;p = p−>succ ;}}void stampa_menu() {cout << " 1 : AggiungiPersona . \ n" ;cout << " 2 : Sposa . \ n" ;cout << " 3 : Coniugato . \ n" ;cout << " 4 : NumeroSposi . \ n" ;cout << " 5 : NumeroCoppie . \ n" ;cout << " 6 : Svuota . \ n" ;cout << " 7 : Stampa . \ n" ;cout << " 8 : Esc i . \ n" ;}void AggiungiPersona (AgenziaMatrimoniale& am) ;void Sposa (AgenziaMatrimoniale& am) ;void Coniugato (AgenziaMatrimoniale& am) ;void NumeroSposi (AgenziaMatrimoniale& am) ;void NumeroCoppie(AgenziaMatrimoniale& am) ;void Svuota (AgenziaMatrimoniale& am) ;void Stampa(AgenziaMatrimoniale& am) ;

SX. Soluzioni degli altri esercizi 135int main (){ AgenziaMatrimoniale am;int s c e l t a ;do {stampa_menu() ;c in >> s c e l t a ;switch (s c e l t a) {case 1 :AggiungiPersona (am) ;break ;case 2 :Sposa (am) ;break ;case 3 :Coniugato (am) ;break ;case 4 :NumeroSposi (am) ;break ;case 5 :NumeroCoppie(am) ;break ;case 6 :Svuota (am) ;break ;case 7 :Stampa(am) ;break ;case 8 :break ;default :cout << " Sce l t a non va l i d a . \ n" ;break ;}} while (s c e l t a != 8) ;return 0 ;}void AggiungiPersona (AgenziaMatrimoniale& am) {Nome n ;cout << " Sp e c i f i c a r e i l nome : " ;c in >> n ;char s e s s o ;do {cout << " S p e c i f i c a r e i l s e s s o (M, F) : " ;c in >> se s s o ;} while ((s e s s o != 'M') && (s e s s o != 'm') && (s e s s o != 'F ')&& (s e s s o != ' f ')) ;bool maschio = (s e s s o == 'M' | | s e s s o == 'm') ;i f (am. AggiungiPersona (n , maschio))cout << "Persona aggiunta . \ n" ;elsecout << "Persona non aggiunta . \ n" ;}void Sposa (AgenziaMatrimoniale& am) {Nome n1 , n2 ;

SX. Soluzioni degli altri esercizi 136cout << " I n s e r i r e primo nome : " ;c in >> n1 ;cout << " I n s e r i r e secondo nome : " ;c in >> n2 ;i f (am. Sposa (n1 , n2))cout << "Matrimonio r e g i s t r a t o . \ n" ;elsecout << "Matrimonio non r e g i s t r a t o . \ n" ;}void Coniugato (AgenziaMatrimoniale& am) {Nome n ;bool coniugato ;cout << " I n s e r i s c i i l nome : " ;c in >> n ;i f (! am. Coniugato (n , coniugato))cout << "Persona non e s i s t e n t e . \ n" ;elsei f (coniugato)cout << n << " ha coniuge . \ n" ;elsecout << n << " non ha coniuge . \ n" ;}void NumeroSposi (AgenziaMatrimoniale& am) {cout << " I l numero spo s i è pa r i a " << am. NumeroSposi () << endl ;}void NumeroCoppie(AgenziaMatrimoniale& am) {cout << " I l numero coppie è pa r i a " << am. NumeroCoppie () << endl ;}void Svuota (AgenziaMatrimoniale& am) {am. Svuota () ;cout << "AgenziaMatrimoniale svuotata . \ n" ;}void Stampa(AgenziaMatrimoniale& am) {am. Stampa () ;cout << endl ;}SX.9 Parco Pattini Traccia a pag. 45La struttura dati può essere realizzata come una lista dinamica semplicemen-te collegata in cui ogni elemento rappresenta lo stato di tutti i pattini di unadata taglia. La generica cella della struttura contiene dunque:
• taglia dei pattini;
• numero totale di pattini della taglia data;
• numero totale di pattini disponibili della taglia data.

SX. Soluzioni degli altri esercizi 137
first 44 1 1 43 1 1 42 2 1

Taglia dei pattini

Numero pattini
complessivo

Numero pattini
disponibiliFigura SX.1: La struttura che implementa il parco pattini.A titolo esempli�cativo si immagini che il parco pattini disponga di unpaio di pattini della taglia 44, di un paio della taglia 43 e di due paia dellataglia 42. Se uno delle due paia di pattini della taglia 42 risulta �ttato, lostato della struttura è mostrato in Figura SX.1.Si noti come la struttura ammetta una gestione di tipo tabellare, dalmomento che la taglia dei pattini risulta essere unica per ogni cella, e quindiassimilabile ad una chiave.Di seguito si riporta il listato.#include <iostream>using namespace std ;typedef unsigned int Tagl ia ;struct Pat t i n i {Tagl ia t a g l i a ;unsigned int t o t a l i ;unsigned int d i s p o n i b i l i ;} ;struct Record ;typedef Record ∗ PRec ;typedef struct Record {Pa t t i n i p a t t i n i ;PRec succ ;} ;class ParcoPat t in i {private :PRec f i r s t ;unsigned int to t ;PRec GetRecordByTaglia (Tagl ia t) const ;ParcoPat t in i (const ParcoPat t in i &); // i n i b i s c e l a copia mediatne co s t r .ParcoPat t in i& operator=(const ParcoPat t in i &); // i n i b i s c e l ' a s segnaz ionepublic :ParcoPat t in i () ;~ParcoPat t in i () ;void Agg iung iPat t in i (Tagl ia t) ;void Svuota () ;unsigned int NumeroTotPattini () const ;bool Fi t ta (Tagl ia t) ;

SX. Soluzioni degli altri esercizi 138unsigned int Di s p o n ib i l i t a (Tagl ia t) const ;unsigned int NumeroPattini (Tagl ia t) const ;bool Res t i t u z i on e (Tagl ia t) ;void Stampa () const ;} ;ParcoPat t in i : : ParcoPat t in i () : f i r s t (0) , to t (0) {}ParcoPat t in i : : ~ ParcoPat t in i () {Svuota () ;}PRec ParcoPat t in i : : GetRecordByTaglia (Tagl ia t) const {//Questo metodo permette l a g e s t i one d e l l a l i s t a come t a b e l l a .// Re s t i t u i s c e i l punt . a l l a c e l l a contenente i p a t t i n i d e l l a t a g l i a r i c h i e s t a ,// oppure 0 se t a l e c e l l a non è n e l l a l i s t a .PRec p = f i r s t ;while (p) {i f (p−>pa t t i n i . t a g l i a == t) // t r o va t o ?return p ; // r e s t i t u i s c e i l puntatore a l l a c e l l a d e l l a l i s t aelsep = p−>succ ; // a l t r imen t i avanza d i una c e l l a}return 0 ; //non t r o va t o .}void ParcoPat t in i : : Agg iung iPat t in i (Tagl ia t) {PRec p = GetRecordByTaglia (t) ;i f (p) {p−>pa t t i n i . t o t a l i ++;p−>pa t t i n i . d i s p o n i b i l i++;}else {PRec p = new Record ;p−>pa t t i n i . t a g l i a = t ;p−>pa t t i n i . t o t a l i = 1 ;p−>pa t t i n i . d i s p o n i b i l i = 1 ;p−>succ = f i r s t ;f i r s t = p ;}to t++;}void ParcoPat t in i : : Svuota () {while (f i r s t) {PRec tbd = f i r s t ;f i r s t = f i r s t −>succ ;delete tbd ;}to t = 0 ;}unsigned int ParcoPat t in i : : NumeroTotPattini () const {return to t ;}

SX. Soluzioni degli altri esercizi 139bool ParcoPat t in i : : F i t ta (Tagl ia t) {PRec p = GetRecordByTaglia (t) ;// c i sono p a t t i n i d e l l a t a g l i a s p e c i f i c a t a , e se s ì , ce ne sono d i d i sp .?i f (p && (p−>pa t t i n i . d i s p o n i b i l i > 0)) {p−>pa t t i n i . d i s p o n i b i l i −−; // decrementa l a d i s p o n i b i l i t àreturn true ;}elsereturn fa lse ;}unsigned int ParcoPat t in i : : D i s p o n ib i l i t a (Tagl ia t) const {PRec p = GetRecordByTaglia (t) ;i f (p)return p−>pa t t i n i . d i s p o n i b i l i ;elsereturn 0 ;}unsigned int ParcoPat t in i : : NumeroPattini (Tagl ia t) const {PRec p = GetRecordByTaglia (t) ;i f (p)return p−>pa t t i n i . t o t a l i ;elsereturn 0 ;}bool ParcoPat t in i : : Re s t i t u z i on e (Tagl ia t) {PRec p = GetRecordByTaglia (t) ;// c i sono p a t t i n i d e l l a t a g l i a s p e c i f . , e se s ì , ce ne sono d i f i t t a t i ?i f (p && (p−>pa t t i n i . d i s p o n i b i l i < p−>pa t t i n i . t o t a l i)) {p−>pa t t i n i . d i s p o n i b i l i++;return true ;}elsereturn fa lse ;}void ParcoPat t in i : : Stampa () const {PRec p = f i r s t ;while (p) {cout << "Tagl ia " << p−>pa t t i n i . t a g l i a << " : " ;cout << "Totale : " << p−>pa t t i n i . t o t a l i << " " ;cout << " F i t t a t i : " << p−>pa t t i n i . t o t a l i − p−>pa t t i n i . d i s p o n i b i l i<< " . \ n" ;p = p−>succ ;}}void Agg iung iPat t in i (ParcoPat t in i& p) ;void Svuota (ParcoPat t in i& p) ;void NumeroTotPattini (ParcoPat t in i& p) ;void Fi t ta (ParcoPat t in i& p) ;void Di s p on ib i l i t a (ParcoPat t in i& p) ;void NumeroPattini (ParcoPat t in i& p) ;void Res t i t u z i on e (ParcoPat t in i& p) ;void Stampa(ParcoPat t in i& p) ;

SX. Soluzioni degli altri esercizi 140void stampa_menu() {cout << "\n" ;cout << " 1 : Agg iung iPat t in i . \ n" ;cout << " 2 : Svuota . \ n" ;cout << " 3 : NumeroTotPattini . \ n" ;cout << " 4 : F i t ta . \ n" ;cout << " 5 : D i s p on i b i l i t a . \ n" ;cout << " 6 : NumeroPattini . \ n" ;cout << " 7 : Re s t i t u z i on e . \ n" ;cout << " 8 : Stampa . \ n" ;cout << " 9 : Esc i . \ n" ;cout << " Sce l t a : " ;}int main (){ ParcoPat t in i parco ;int s c e l t a ;do {stampa_menu() ;c in >> s c e l t a ;switch (s c e l t a) {case 1 :Agg iung iPat t in i (parco) ;break ;case 2 :Svuota (parco) ;break ;case 3 :NumeroTotPattini (parco) ;break ;case 4 :F i t ta (parco) ;break ;case 5 :D i s p on i b i l i t a (parco) ;break ;case 6 :NumeroPattini (parco) ;break ;case 7 :Re s t i t u z i on e (parco) ;break ;case 8 :Stampa(parco) ;break ;case 9 :break ;default :cout << " Sce l t a non va l i d a . \ n" ;break ;}} while (s c e l t a != 9) ;return 0 ;}void Agg iung iPat t in i (ParcoPat t in i& p) {Tagl ia t ;

SX. Soluzioni degli altri esercizi 141cout << " I n s e r i r e l a t a g l i a : " ;c in >> t ;p . Agg iung iPat t in i (t) ;cout << " Pat t i n i agg i un t i a l parco . \ n" ;}void Svuota (ParcoPat t in i& p) {p . Svuota () ;cout << "Parco svuotato . \ n" ;}void NumeroTotPattini (ParcoPat t in i& p) {cout << " I l parco p a t t i n i cont i ene " << p . NumeroTotPattini ()<< " paia d i p a t t i n i in t o t a l e . \ n" ;}void Fi t ta (ParcoPat t in i& p) {Tagl ia t ;cout << " I n s e r i r e l a t a g l i a : " ;c in >> t ;i f (p . F i t ta (t))cout << " Pat t i n i f i t t a t i . \ n" ;elsecout << " Pat t i n i non d i s p o n i b i l i . \ n" ;}void Di s p on ib i l i t a (ParcoPat t in i& p) {Tagl ia t ;cout << " I n s e r i r e l a t a g l i a : " ;c in >> t ;cout << " D i s p on i b i l i t a ' t a g l i a " << t << " : " << p . D i s p on i b i l i t a (t)<< endl ;}void NumeroPattini (ParcoPat t in i& p) {Tagl ia t ;cout << " I n s e r i r e l a t a g l i a : " ;c in >> t ;cout << " I l parco cont i ene " << p . NumeroPattini (t) <<" paia d i p a t t i n i d i t a g l i a " << t << " . \ n" ;}void Res t i t u z i on e (ParcoPat t in i& p) {Tagl ia t ;cout << " I n s e r i r e l a t a g l i a : " ;c in >> t ;i f (p . Re s t i t u z i on e (t))cout << " Pat t i n i r e s t i t u i t i . \ n" ;elsecout << "Errore . Pa t t i n i non f i t t a t i . \ n" ;}void Stampa(ParcoPat t in i& p) {p . Stampa () ;}

SX. Soluzioni degli altri esercizi 142SX.10 Timer Traccia a pag. 46#include <iostream>#include <time . h>using namespace std ;typedef int Time ;class Timer {private :Time startTime ;Time stopTime ;public :Timer () ;void s t a r t () ;void stop () ;void r e s e t () ;Time getTime () const ;} ;Timer : : Timer () {r e s e t () ;}void Timer : : s t a r t () {startTime = time (0) ;stopTime = 0 ;}void Timer : : s top () {stopTime = time (0) ;}void Timer : : r e s e t () {startTime = 0 ;stopTime = 0 ;}Time Timer : : getTime () const {i f (startTime == 0) // i l t imer è in s t a t o d i r e s e t ?return 0 ;i f (stopTime == 0) // i l t imer è in moto?return time (0) − startTime ; // s ìelsereturn stopTime − startTime ; //no}int main (){ Timer t ;char ch ;cout << " ' s ' s t a r t \n" ;cout << " 'x ' stop \n" ;cout << " ' r ' r e s e t \n" ;cout << " 'p ' show t imer\n" ;cout << " ' e ' e x i t \n" ;

SX. Soluzioni degli altri esercizi 143do {c in >> ch ;switch (ch) {case ' s ' :t . s t a r t () ;cout << "Timer s t a r t ed . \ n" ;break ;case ' x ' :t . s top () ;cout << "Timer stopped . \ n" ;break ;case ' r ' :t . r e s e t () ;cout << "Timer r e s e t . \ n" ;break ;case ' p ' :cout << "Timer shows : " << t . getTime () << endl ;break ;case ' e ' :break ;default :cout << " Inva l i d command. \ n" ;}} while (ch != ' e ') ;return 0 ;}SX.11 Timer Avanzato Traccia a pag. 47Il primo dei requisiti aggiuntivi imposti dalla traccia suggerisce intuitivamen-te che il timer è una sorta di accumulatore che tiene memoria della duratacomplessiva degli intervalli di tempo cronometrati �no ad un certo istante.Infatti l'esecuzione di un nuovo conteggio fornisce un contributo che va asommarsi a tutti gli eventuali contributi precedenti.Ai �ni dello svolgimento di questo esercizio, il valore corrente del cronome-tro può essere pertanto considerato come la composizione di due contributi:
• la somma di tutti gli intervalli di tempo cronometrati nel passato, cioècompresi tra un segnale di START ed uno di STOP;
• l'eventuale contributo del conteggio corrente, se il timer è attivo.È dunque possibile pensare al timer come una classe dotata di due membriprivati:storedTime: contiene la somma di tutti i conteggi passati già terminati;questo membro va aggiornato al termine di ogni conteggio;

SX. Soluzioni degli altri esercizi 144startTime: contiene l'istante di inizio dell'eventuale conteggio in corso; vale0 se il timer è inattivo.In questo modo, all'arrivo del messaggio GETTIME, è su�ciente restituireil valore del membro storedTime, aggiungendo eventualmente la di�erenzatra l'istante attuale e l'istante startTime, se startTime è diverso da zero(cioè se c'è un conteggio in corso).Dal momento che spesso sorge la necessità di valutare se c'è un conteggioin corso oppure no, in questa implementazione lo svolgimento di tale servizioè stato incapsulato nell'opportuno metodo privatobool isRunning () const ;#include <iostream>#include <time . h>using namespace std ;typedef int Time ;class Timer {private :Time storedTime ;Time startTime ;bool isRunning () const { return (startTime != 0) ; } ;public :Timer () ;void s t a r t () ;void stop () ;void r e s e t () ;Time getTime () const ;} ;Timer : : Timer () {r e s e t () ;}void Timer : : s t a r t () {i f (! isRunning ())startTime = time (0) ;}void Timer : : s top () {i f (isRunning ()) {storedTime += time (0) − startTime ; //accumula i l tempo de l cont . in corsostartTime = 0 ; // ferma i l contegg io}}void Timer : : r e s e t () {storedTime = 0 ;startTime = 0 ;}Time Timer : : getTime () const {Time t = storedTime ;

SX. Soluzioni degli altri esercizi 145i f (isRunning ())t += time (0) − startTime ; // aggiunge i l c on t r i bu t o de l cont . in corsoreturn t ;}int main (){ Timer t ;char ch ;cout << " ' s ' s t a r t \n" ;cout << " 'x ' stop \n" ;cout << " ' r ' r e s e t \n" ;cout << " 'p ' show t imer\n" ;cout << " ' e ' e x i t \n" ;do {c in >> ch ;switch (ch) {case ' s ' :t . s t a r t () ;cout << "Timer s t a r t ed . \ n" ;break ;case ' x ' :t . s top () ;cout << "Timer stopped . \ n" ;break ;case ' r ' :t . r e s e t () ;cout << "Timer r e s e t . \ n" ;break ;case ' p ' :cout << "Timer shows : " << t . getTime () << endl ;break ;case ' e ' :break ;default :cout << " Inva l i d command. \ n" ;}} while (ch != ' e ') ;return 0 ;}SX.12 Votazioni Traccia a pag. 48#include <iostream>using namespace std ;const int NMAX = 50 ;typedef char Nome[NMAX] ;typedef unsigned int Codice ; //un p a r t i t o è per s emp l i c i t à i d e n t i f i c a t o//da un cod ice d i t i p o in t e r o .

SX. Soluzioni degli altri esercizi 146struct Oggetto {Codice id ;unsigned int vo t i ;} ;struct Cel la ;typedef Cel la ∗ PCella ;struct Cel la {Oggetto elem ;PCella succ ;} ;class Votaz ion i {private :PCella f i r s t ;unsigned int numVoti ;PCella CercaPar t i to (Codice id) const ;public :Votaz ion i () ;~Votaz ion i () ;unsigned int AggiungiVoto (Codice id) ;void Svuota () ;unsigned int GetVot iPart i to (Codice id) const ;unsigned int GetNumeroVoti () const ;void GetSituaz ione () const ;} ;Votaz ion i : : Votaz ion i () : f i r s t (0) , numVoti (0) {}Votaz ion i : : ~ Votaz ion i () {Svuota () ;}PCella Votaz ion i : : CercaPar t i to (Codice id) const {//La s t r u t t u r a è g e s t i b i l e con metodo t a b e l l a r e : i n f a t t i i l cod ice// p a r t i t o rappresenta una ch iave per l a t a b e l l a de i v o t i .//Questo metodo r e s t i t u i s c e i l puntatore a l l a c e l l a avente id par i a q u e l l o// s p e c i f i c a t o in ingres so , 0 a l t r imen t i .PCella p = f i r s t ;bool t rovato = fa l se ;while ((p) && ! t rovato) {i f (p−>elem . id == id)t rovato = true ;elsep = p−>succ ;}return p ; // se t r o va t o è vero , p punta a l l a c e l l a r i c e r c . , a l t r im . p è zero}unsigned int Votaz ion i : : AggiungiVoto (Codice id) {numVoti++; // incremento i l numero d i v o t i c omp l e s s i v iPCella p = CercaPar t i to (id) ;i f (p) {p−>elem . vo t i++;return p−>elem . vo t i ;

SX. Soluzioni degli altri esercizi 147} else {PCella p = new Cel la ;p−>elem . id = id ;p−>elem . vo t i = 1 ;p−>succ = f i r s t ;f i r s t = p ;return 1 ;}}void Votaz ion i : : Svuota () {while (f i r s t) {PCella tbd = f i r s t ;f i r s t = f i r s t −>succ ;delete tbd ;}numVoti = 0 ;}unsigned int Votaz ion i : : GetVot iPart i to (Codice id) const {PCella p = CercaPar t i to (id) ;i f (p)return p−>elem . vo t i ;elsereturn 0 ;}unsigned int Votaz ion i : : GetNumeroVoti () const {return numVoti ;}void Votaz ion i : : GetSituaz ione () const {PCella p = f i r s t ;while (p) {cout << "Part i to " << p−>elem . id << " : vo t i " << " " << p−>elem . vo t i ;cout << " (" << (f loat)p−>elem . vo t i /numVoti∗100 << "%)" << endl ;p = p−>succ ;}}void AggiungiVoto (Votaz ion i& v) ;void Svuota (Votaz ion i& v) ;void GetVot iPart i to (Votaz ion i& v) ;void GetNumeroVoti (Votaz ion i& v) ;void GetSituaz ione (Votaz ion i& v) ;void stampa_menu() {cout << " 1 : Aggiungi voto . \ n" ;cout << " 2 : Svuota . \ n" ;cout << " 3 : Voti p a r t i t o . \ n" ;cout << " 4 : Numero vo t i . \ n" ;cout << " 5 : S i t ua z i on e . \ n" ;cout << " 6 : Esc i . \ n" ;}int main (){ Votaz ion i v ;

SX. Soluzioni degli altri esercizi 148int s c e l t a ;do {stampa_menu() ;c in >> s c e l t a ;switch (s c e l t a) {case 1 :AggiungiVoto (v) ;break ;case 2 :Svuota (v) ;break ;case 3 :GetVot iPart i to (v) ;break ;case 4 :GetNumeroVoti (v) ;break ;case 5 :GetSituaz ione (v) ;break ;case 6 :break ;default :cout << " Sce l t a non va l i d a . \ n" ;break ;}} while (s c e l t a != 6) ;return 0 ;}void AggiungiVoto (Votaz ion i& v) {Codice id ;cout << " Ind i c a r e i l p a r t i t o : " ;c in >> id ;cout << "Voto Aggiunto . Ora i l p a r t i t o " << id << " ha vo t i " <<v . AggiungiVoto (id) << " . \ n" ;}void Svuota (Votaz ion i& v) {v . Svuota () ;cout << " Strut tura svuotata . " << endl ;}void GetVot iPart i to (Votaz ion i& v) {Codice id ;cout << " Ind i c a r e i l p a r t i t o : " ;c in >> id ;cout << " I l p a r t i t o " << id << " ha ottenuto vo t i " <<v . GetVot iPart i to (id) << " . \ n" ;}void GetNumeroVoti (Votaz ion i& v) {cout << " I vo t i c omp l e s s i v i sono : " << v . GetNumeroVoti () << endl ;}void GetSituaz ione (Votaz ion i& v) {v . GetSituaz ione () ;}

Appendice AGNU Free Documentation LicenseVersion 1.2, November 2002Copyright c©2000,2001,2002 Free Software Foundation, Inc.51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USAEveryone is permitted to copy and distribute verbatim copies of this license document,but changing it is not allowed.PreambleThe purpose of this License is to make a manual, textbook, or other functional anduseful document free in the sense of freedom: to assure everyone the e�ective freedom tocopy and redistribute it, with or without modifying it, either commercially or noncommer-cially. Secondarily, this License preserves for the author and publisher a way to get creditfor their work, while not being considered responsible for modi�cations made by others.This License is a kind of copyleft, which means that derivative works of the documentmust themselves be free in the same sense. It complements the GNU General PublicLicense, which is a copyleft license designed for free software.We have designed this License in order to use it for manuals for free software, becausefree software needs free documentation: a free program should come with manuals provi-ding the same freedoms that the software does. But this License is not limited to softwaremanuals; it can be used for any textual work, regardless of subject matter or whether itis published as a printed book. We recommend this License principally for works whosepurpose is instruction or reference.A.1 Applicability and De�nitionsThis License applies to any manual or other work, in any medium, that contains a noticeplaced by the copyright holder saying it can be distributed under the terms of this License.Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use thatwork under the conditions stated herein. The Document, below, refers to any suchmanual or work. Any member of the public is a licensee, and is addressed as you. You149

A. GNU Free Documentation License 150accept the license if you copy, modify or distribute the work in a way requiring permissionunder copyright law.A Modi�ed Version of the Document means any work containing the Documentor a portion of it, either copied verbatim, or with modi�cations and/or translated intoanother language.A Secondary Section is a named appendix or a front-matter section of the Documentthat deals exclusively with the relationship of the publishers or authors of the Documentto the Document's overall subject (or to related matters) and contains nothing that couldfall directly within that overall subject. (Thus, if the Document is in part a textbook ofmathematics, a Secondary Section may not explain any mathematics.) The relationshipcould be a matter of historical connection with the subject or with related matters, or oflegal, commercial, philosophical, ethical or political position regarding them.The Invariant Sections are certain Secondary Sections whose titles are designated,as being those of Invariant Sections, in the notice that says that the Document is releasedunder this License. If a section does not �t the above de�nition of Secondary then it is notallowed to be designated as Invariant. The Document may contain zero Invariant Sections.If the Document does not identify any Invariant Sections then there are none.The Cover Texts are certain short passages of text that are listed, as Front-CoverTexts or Back-Cover Texts, in the notice that says that the Document is released underthis License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text maybe at most 25 words.A Transparent copy of the Document means a machine-readable copy, representedin a format whose speci�cation is available to the general public, that is suitable for re-vising the document straightforwardly with generic text editors or (for images composedof pixels) generic paint programs or (for drawings) some widely available drawing editor,and that is suitable for input to text formatters or for automatic translation to a varietyof formats suitable for input to text formatters. A copy made in an otherwise Transpa-rent �le format whose markup, or absence of markup, has been arranged to thwart ordiscourage subsequent modi�cation by readers is not Transparent. An image format is notTransparent if used for any substantial amount of text. A copy that is not Transparent iscalled Opaque.Examples of suitable formats for Transparent copies include plain ASCII without mar-kup, Texinfo input format, LaTeX input format, SGML or XML using a publicly availableDTD, and standard-conforming simple HTML, PostScript or PDF designed for humanmodi�cation. Examples of transparent image formats include PNG, XCF and JPG. Opa-que formats include proprietary formats that can be read and edited only by proprietaryword processors, SGML or XML for which the DTD and/or processing tools are not gene-rally available, and the machine-generated HTML, PostScript or PDF produced by someword processors for output purposes only.The Title Page means, for a printed book, the title page itself, plus such followingpages as are needed to hold, legibly, the material this License requires to appear in the titlepage. For works in formats which do not have any title page as such, Title Page meansthe text near the most prominent appearance of the work's title, preceding the beginningof the body of the text.A section Entitled XYZ means a named subunit of the Document whose title eitheris precisely XYZ or contains XYZ in parentheses following text that translates XYZ inanother language. (Here XYZ stands for a speci�c section name mentioned below, such asAcknowledgements, Dedications, Endorsements, or History.) To Preserve the

A. GNU Free Documentation License 151Title of such a section when you modify the Document means that it remains a sectionEntitled XYZ according to this de�nition.The Document may include Warranty Disclaimers next to the notice which states thatthis License applies to the Document. These Warranty Disclaimers are considered to beincluded by reference in this License, but only as regards disclaiming warranties: any otherimplication that these Warranty Disclaimers may have is void and has no e�ect on themeaning of this License.A.2 Verbatim CopyingYou may copy and distribute the Document in any medium, either commercially or non-commercially, provided that this License, the copyright notices, and the license noticesaying this License applies to the Document are reproduced in all copies, and that youadd no other conditions whatsoever to those of this License. You may not use technicalmeasures to obstruct or control the reading or further copying of the copies you makeor distribute. However, you may accept compensation in exchange for copies. If you di-stribute a large enough number of copies you must also follow the conditions in section3. You may also lend copies, under the same conditions stated above, and you maypublicly display copies.A.3 Copying in QuantityIf you publish printed copies (or copies in media that commonly have printed covers) of theDocument, numbering more than 100, and the Document's license notice requires CoverTexts, you must enclose the copies in covers that carry, clearly and legibly, all these CoverTexts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover.Both covers must also clearly and legibly identify you as the publisher of these copies.The front cover must present the full title with all words of the title equally prominentand visible. You may add other material on the covers in addition. Copying with changeslimited to the covers, as long as they preserve the title of the Document and satisfy theseconditions, can be treated as verbatim copying in other respects.If the required texts for either cover are too voluminous to �t legibly, you should putthe �rst ones listed (as many as �t reasonably) on the actual cover, and continue the restonto adjacent pages.If you publish or distribute Opaque copies of the Document numbering more than 100,you must either include a machine-readable Transparent copy along with each Opaquecopy, or state in or with each Opaque copy a computer-network location from whichthe general network-using public has access to download using public-standard networkprotocols a complete Transparent copy of the Document, free of added material. If you usethe latter option, you must take reasonably prudent steps, when you begin distribution ofOpaque copies in quantity, to ensure that this Transparent copy will remain thus accessibleat the stated location until at least one year after the last time you distribute an Opaquecopy (directly or through your agents or retailers) of that edition to the public.It is requested, but not required, that you contact the authors of the Document wellbefore redistributing any large number of copies, to give them a chance to provide youwith an updated version of the Document.

A. GNU Free Documentation License 152A.4 Modi�cationsYou may copy and distribute a Modi�ed Version of the Document under the conditionsof sections 2 and 3 above, provided that you release the Modi�ed Version under preciselythis License, with the Modi�ed Version �lling the role of the Document, thus licensingdistribution and modi�cation of the Modi�ed Version to whoever possesses a copy of it.In addition, you must do these things in the Modi�ed Version:A. Use in the Title Page (and on the covers, if any) a title distinct from that of theDocument, and from those of previous versions (which should, if there were any,be listed in the History section of the Document). You may use the same title as aprevious version if the original publisher of that version gives permission.B. List on the Title Page, as authors, one or more persons or entities responsible forauthorship of the modi�cations in the Modi�ed Version, together with at least �veof the principal authors of the Document (all of its principal authors, if it has fewerthan �ve), unless they release you from this requirement.C. State on the Title page the name of the publisher of the Modi�ed Version, as thepublisher.D. Preserve all the copyright notices of the Document.E. Add an appropriate copyright notice for your modi�cations adjacent to the othercopyright notices.F. Include, immediately after the copyright notices, a license notice giving the publicpermission to use the Modi�ed Version under the terms of this License, in the formshown in the Addendum below.G. Preserve in that license notice the full lists of Invariant Sections and required CoverTexts given in the Document's license notice.H. Include an unaltered copy of this License.I. Preserve the section Entitled History, Preserve its Title, and add to it an itemstating at least the title, year, new authors, and publisher of the Modi�ed Versionas given on the Title Page. If there is no section Entitled History in the Document,create one stating the title, year, authors, and publisher of the Document as givenon its Title Page, then add an item describing the Modi�ed Version as stated inthe previous sentence.J. Preserve the network location, if any, given in the Document for public access toa Transparent copy of the Document, and likewise the network locations given inthe Document for previous versions it was based on. These may be placed in theHistory section. You may omit a network location for a work that was publishedat least four years before the Document itself, or if the original publisher of theversion it refers to gives permission.K. For any section Entitled Acknowledgements or Dedications, Preserve the Title ofthe section, and preserve in the section all the substance and tone of each of thecontributor acknowledgements and/or dedications given therein.L. Preserve all the Invariant Sections of the Document, unaltered in their text and intheir titles. Section numbers or the equivalent are not considered part of the sectiontitles.

A. GNU Free Documentation License 153M. Delete any section Entitled Endorsements. Such a section may not be included inthe Modi�ed Version.N. Do not retitle any existing section to be Entitled Endorsements or to con�ict intitle with any Invariant Section.O. Preserve any Warranty Disclaimers.If the Modi�ed Version includes new front-matter sections or appendices that qualifyas Secondary Sections and contain no material copied from the Document, you may atyour option designate some or all of these sections as invariant. To do this, add their titlesto the list of Invariant Sections in the Modi�ed Version's license notice. These titles mustbe distinct from any other section titles.You may add a section Entitled Endorsements, provided it contains nothing but en-dorsements of your Modi�ed Version by various parties�for example, statements of peerreview or that the text has been approved by an organization as the authoritative de�nitionof a standard.You may add a passage of up to �ve words as a Front-Cover Text, and a passage ofup to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modi�edVersion. Only one passage of Front-Cover Text and one of Back-Cover Text may be addedby (or through arrangements made by) any one entity. If the Document already includesa cover text for the same cover, previously added by you or by arrangement made by thesame entity you are acting on behalf of, you may not add another; but you may replacethe old one, on explicit permission from the previous publisher that added the old one.The author(s) and publisher(s) of the Document do not by this License give permissionto use their names for publicity for or to assert or imply endorsement of any Modi�edVersion.A.5 Combining DocumentsYou may combine the Document with other documents released under this License, underthe terms de�ned in section 4 above for modi�ed versions, provided that you include inthe combination all of the Invariant Sections of all of the original documents, unmodi�ed,and list them all as Invariant Sections of your combined work in its license notice, andthat you preserve all their Warranty Disclaimers.The combined work need only contain one copy of this License, and multiple identicalInvariant Sections may be replaced with a single copy. If there are multiple InvariantSections with the same name but di�erent contents, make the title of each such sectionunique by adding at the end of it, in parentheses, the name of the original author orpublisher of that section if known, or else a unique number. Make the same adjustmentto the section titles in the list of Invariant Sections in the license notice of the combinedwork.In the combination, you must combine any sections Entitled History in the variousoriginal documents, forming one section Entitled History; likewise combine any sectionsEntitled Acknowledgements, and any sections Entitled Dedications. You must delete allsections Entitled Endorsements.

A. GNU Free Documentation License 154A.6 Collection of DocumentsYou may make a collection consisting of the Document and other documents released underthis License, and replace the individual copies of this License in the various documentswith a single copy that is included in the collection, provided that you follow the rules ofthis License for verbatim copying of each of the documents in all other respects.You may extract a single document from such a collection, and distribute it indivi-dually under this License, provided you insert a copy of this License into the extracteddocument, and follow this License in all other respects regarding verbatim copying of thatdocument.A.7 Aggregation with Independent WorksA compilation of the Document or its derivatives with other separate and independentdocuments or works, in or on a volume of a storage or distribution medium, is called anaggregate if the copyright resulting from the compilation is not used to limit the legalrights of the compilation's users beyond what the individual works permit. When theDocument is included in an aggregate, this License does not apply to the other works inthe aggregate which are not themselves derivative works of the Document.If the Cover Text requirement of section 3 is applicable to these copies of the Document,then if the Document is less than one half of the entire aggregate, the Document's CoverTexts may be placed on covers that bracket the Document within the aggregate, or theelectronic equivalent of covers if the Document is in electronic form. Otherwise they mustappear on printed covers that bracket the whole aggregate.A.8 TranslationTranslation is considered a kind of modi�cation, so you may distribute translations of theDocument under the terms of section 4. Replacing Invariant Sections with translationsrequires special permission from their copyright holders, but you may include translationsof some or all Invariant Sections in addition to the original versions of these InvariantSections. You may include a translation of this License, and all the license notices inthe Document, and any Warranty Disclaimers, provided that you also include the originalEnglish version of this License and the original versions of those notices and disclaimers.In case of a disagreement between the translation and the original version of this Licenseor a notice or disclaimer, the original version will prevail.If a section in the Document is Entitled Acknowledgements, Dedications, or History,the requirement (section 4) to Preserve its Title (section 1) will typically require changingthe actual title.A.9 TerminationYou may not copy, modify, sublicense, or distribute the Document except as expressly pro-vided for under this License. Any other attempt to copy, modify, sublicense or distributethe Document is void, and will automatically terminate your rights under this License.

A. GNU Free Documentation License 155However, parties who have received copies, or rights, from you under this License will nothave their licenses terminated so long as such parties remain in full compliance.A.10 Future revisions of this licenseThe Free Software Foundation may publish new, revised versions of the GNU Free Do-cumentation License from time to time. Such new versions will be similar in spirit tothe present version, but may di�er in detail to address new problems or concerns. Seehttp://www.gnu.org/copyleft/.Each version of the License is given a distinguishing version number. If the Documentspeci�es that a particular numbered version of this License or any later version appliesto it, you have the option of following the terms and conditions either of that speci�edversion or of any later version that has been published (not as a draft) by the Free SoftwareFoundation. If the Document does not specify a version number of this License, you maychoose any version ever published (not as a draft) by the Free Software Foundation.How to use this License for your documentsTo use this License in a document you have written, include a copy of the License in thedocument and put the following copyright and license notices just after the title page:Copyright c©YEAR YOUR NAME. Permission is granted to copy, distributeand/or modify this document under the terms of the GNU Free Documenta-tion License, Version 1.2 or any later version published by the Free SoftwareFoundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNUFree Documentation License.If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace thewith...Texts. line with this:with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.If you have Invariant Sections without Cover Texts, or some other combination of thethree, merge those two alternatives to suit the situation.If your document contains nontrivial examples of program code, we recommend relea-sing these examples in parallel under your choice of free software license, such as the GNUGeneral Public License, to permit their use in free software.

Bibliogra�a[1] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, specialedition, 2000.[2] Bruce Eckel. Thinking in C++, Volume 1: Introduction to Standard C++. PrenticeHall, 2nd edition, 2000. Liberamente scaricabile da http://www.bruceeckel.com.Disponibile anche in versione italiana edita da Apogeo.[3] Carlo Savy. Da C++ ad UML: guida alla progettazione. Mc Graw Hill, 2000.[4] SGI. C++ Standard Template Library (STL). http://www.sgi.com/tech/stl.[5] Scott Meyers. E�ective C++: 55 Speci�c Ways to Improve Your Programs andDesigns. Addison-Wesley, 3rd edition, 2005.[6] GCC. GNU/GCC, the GNU compiler collection. http://gcc.gnu.org.[7] ISO/IEC. International Standard for C++. International Organization forStandardization (ISO), 2st edition, 2003. http://www.ansi.org.[8] Bloodshed Software. Dev-C++. http://www.bloodshed.net/devcpp.html.[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements ofReusable Object-Oriented Software. Addison-Wesley, 1995.[10] Scott Meyers. More E�ective C++: 35 New Ways to Improve Your Programs andDesigns. Addison-Wesley, 1995.[11] Andrei Alexandrescu. Modern C++ Design: Generic Programming and DesignPatterns Applied. Addison-Wesley, 2001.

156

