50 Esercizi di C+-+ V0.86

Marcello Esposito

Copyright (©2006 Marcello Esposito. Permission is granted to copy, distri-
bute and/or modify this document under the terms of the GNU Free Do-
cumentation License, Version 1.2 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled
"GNU Free Documentation License".

Indice

Prefazione

I Esercizi

EL Esercizi su liste

EL.1 Lista Semplicemente Collegata
EL.2 Somma Elementi
EL3 CodaPari.
EL4 MineMaxo
EL.5 Lista Statica
EL.6 E Ordinata o v v oot
EL.7 Elimina Tutti
EL.8 Elimina Ultimi
EL.9 Somma Coda
EL.10 Sposta Testain Coda
EL.11 Elimina Parie Dispari
EL.12 Lista Doppiamente Collegata
EL.13 Ribalta
EA Esercizi su alberi binari
EA.1 Albero Binario
EA.2 Numero Elementi
EA.3 Occorrenze
EA.4 Occorrenza Massima
EA.5 Profondita Limitata
EA6 Somma
EA.7 Sostituisci.
EA8 ContaMineMax
EA.9 Profondita Maggioredi Due
EA.10 Profondita Maggiore Di

INDICE 2
EA.11 Profonditd Massima 23
EA.12 Somma Livello, 24
EA.13 Eliminazione Foglia 24
EA.14 Eliminazione Foglie 24
EA.15 Cerca Foglia, 25
EA.16 Operatore di Confronto 25
EA.17 Conta Nodinon Foglia. 26
EA.18 Conta Nodi 26
EA.19 Conta Nodi Sottoalbero 26

EP Esercizi su pile 28
EP.1 Push Greater 28
EP.2 PushIf 29

EC Esercizi su code 31
EC1 Coda 31
EC.2 Codacon Perdite. 32
EC.3 CodaaPriorita., 33
EC.4 PopMinMax 34

EX Altri esercizi 36
EX.1 Accumulatore 36
EX.2 Cifratore 36
EX.3 Lista Della Spesa 37
EX.4 Predittore di Temperatura 38
EX.5 Contenitore 39
EX.6 Lista Prenotazioni 41
EX.7 Classifica 42
EX.8 Agenzia Matrimoniale 43
EX.9 Parco Pattini, 45
EX.10 Timer 46
EX.11 Timer Avanzato 47
EX.12 Votazionio 48

II Soluzioni 50

SL Soluzioni degli esercizi su liste 51
SL.1 Lista Semplicemente Collegata, 51
SL.2 Somma Elementi 57
SL.3 CodaPari. 57

INDICE 3
SL.4 MineMax 58
SL.5 Lista Statica 59
SL6 EOrdinata, 61
SL.7 Elimina Tutti. 61
SL.8 Elimina Ultimi 62
SL.9 Somma Coda 63
SL.10 Sposta Testain Coda 64
SL.11 Elimina Parie Dispari 65
SL.12 Lista Doppiamente Collegata 66
SL.13 Ribalta 69

SA Soluzioni degli esercizi su alberi binari 73
SA.1 Albero Binario 73
SA.2 Numero Elementi 79
SA.3 Occorrenze 79
SA.4 Occorrenza Massima 80
SA.5 Profondita Limitata 81
SA6 Somma 82
SA.7T SoStituiscl v v v v v e 83
SA8 ContaMineMax 83
SA.9 Profondita Maggiore di Due 84
SA.10 Profondita Maggiore Di 84
SA.11 Profonditd Massima 85
SA.12 Somma Livello, 85
SA.13 Eliminazione Foglia 86
SA.14 Eliminazione Foglie 86
SA.15 Cerca Foglia 87
SA.16 Operatore di Confronto 88
SA.17 Conta Nodi non Foglia. 89
SA.18 Conta Nodi 89
SA.19 Conta Nodi Sottoalbero 90

SP Soluzioni degli esercizi su pile 93
SP.1 Push Greater 93
SP.2 PushIf 96

SC Soluzioni degli esercizi su code 99
SC.1 Coda 99
SC.2 CodaconPerdite. 103
SC.3 CodaaPriorita. 107
SC.4 PopMinMax 112

INDICE 4
SX Soluzioni degli altri esercizi 113
SX.1 Accumulatore 113
SX.2 Cifratore 114
SX.3 ListaDellaSpesa. 115
SX.4 Predittore di Temperatura 119
SX.5 Contenitore 121
SX.6 Lista Prenotazioni 124
SX.7 Classifica 128
SX.8 Agenzia Matrimoniale oL 132
SX.9 ParcoPattini, 136
SX.10 Timer 142
SX.11 Timer Avanzato 143
SX.12 Votazionl 145
A GNU Free Documentation License 149
Al Applicability and Definitions 149
A2 Verbatim Copying 151
A3 Copying in Quantity 151
A4 Modifications 152
AL Combining Documents 153
A.6 Collection of Documents 154
AT Aggregation with Independent Works 154
A8 Translation 154
A9 Termination 154
A.10 Future revisions of this license 155

Prefazione

Gli esercizi presentati in questo eserciziario sono stati proposti a studenti di
Ingegneria delle Telecomunicazioni nell’ambito di un corso di Programmazio-
ne 1.

Il corso aveva lo scopo di introdurre alla programmazione orientata agli
oggetti utilizzando il linguaggio C+-+. Una rilevante parte del programma
affrontava lo studio dei tipi di dati astratti, con particolare enfasi alle strut-
ture dati di tipo contenitore, stressandone i concetti di incapsulamento ed
interfaccia. Gli esercizi dedicati all’approfondimento di questi concetti sono
stati raccolti in questo eserciziario, insieme con le relative soluzioni.

A chi é rivolto questo testo

Gli studenti che approcciano allo studio del linguaggio C+-+, in occasione
di corsi di studi superiori, troveranno utile studiare e risolvere gli esercizi
contenuti in questo testo. Se da un lato questi favoriscono ’acquisizione delle
ricorrenti tecniche legate alla realizzazione ed all’uso di contenitori, dall’altro
rappresentano un pretesto per mettere in pratica approcci algoritmici alla
risoluzione di problemi piu generici.

Non essendo questo un libro di teoria, lo studio di uno dei numerosi testi
dedicati alle nozioni della programmazione, alle regole ed alla sintassi del
linguaggio C++, risulta propedeutico. Il testo certamente piu rappresenta-
tivo & scritto dall’inventore del linguaggio, Bjarne Stroustrup [1]. Esistono
comunque numerosi altri testi orientati all’apprendimento del linguaggio, tra
cui |2, 3.

La struttura degli esercizi

Questo eserciziario contiene differenti tipologie di esercizi: alcuni richiedono
la realizzazione di una struttura dati di tipo contenitore, mediante uso del
costrutto class del linguaggio, fornendo allo studente la specifica in forma

Prefazione 6

di interfaccia dei classici metodi di cui tali strutture sono dotate (aggiunta di
un elemento, conteggio degli elementi, svuotamento, visita, etc.). Altri eser-
cizi, basandosi sulle suddette implementazioni, richiedono la realizzazione di
funzionalita finalizzate ad effettuare particolari elaborazioni sugli elementi
contenuti (per esempio inserimenti o eliminazioni condizionate, somme, spo-
stamenti, conteggi, etc.). Infine, alcuni esercizi richiedono la realizzazione
di strutture dedicate a risolvere specifici problemi, e quindi prive dei classici
requisiti di generalita.

Per ogni metodo da implementare, una traccia fornisce le seguenti infor-
mazioni:

e il nome del metodo;

e l'insieme dei parametri di ingresso;

e l'insieme dei parametri di uscita;

e la descrizione della funzionalita che il metodo deve realizzare.

Per esempio, la specifica di un ipotetico metodo di eliminazione di ele-
menti da una lista, potrebbe apparire come segue.

Nome Param. Ingr. Param. Usc.
Elimina() TElem unsigned int
Elimina dalla struttura tutte le occorrenze dell’elemento specificato dal
parametro di ingresso. Restituisce il numero delle eliminazioni effettuate.

Nel caso in cui l'insieme dei parametri di ingresso e/o di uscita fosse
vuoto, si utilizzera il simbolo “¢”. Talvolta puo accadere che nella descrizione
del funzionamento del metodo non si prenda in considerazione la totalita
dei casi che possono verificarsi (pre-condizioni), limitandosi a descrivere il
comportamento del metodo nei casi d’uso piu comuni. In questo caso, il
programmatore puo scegliere arbitrariamente un comportamento per tutti i
casi non esplicitamente considerati.

Quando I’esercizio richiede la definizione di una struttura di tipo conte-
nitore, spesso gli algoritmi da realizzare sono sufficientemente indipendenti
dal tipo degli elementi contenuti, e fanno riferimento solo ad alcune loro pro-
prieta (relazione di ordinamento, uguaglianza e disuguaglianza tra elementi,
etc.). Per questo motivo, nell’ambito di tali strutture, il tipo degli elementi &
sistematicamente indicato con il generico identificatore TElem, essendo la de-
finizione del tipo TElem centralizzata e localizzata in testa all’header file del-
la classe contenitore. Questa procedura anticipa I'uso della programmazione

Prefazione 7

generica, che in C++ puo essere praticata mediante il meccanismo dei tem-
plates. Grazie alla tecnica suddetta, sara semplice la eventuale conversione
delle classi cosi realizzate in classi template.

Per quanto riguarda le strategie di gestione della memoria, la realizzazione
delle strutture dati pud basarsi su un approccio di tipo statico (uso di vettori
allocati sullo stack) oppure dinamico (realizzazione di strutture concatenate
con puntatori ed allocate nell’heap mediante costrutto new). Questa scelta,
in alcuni casi, ¢é lasciata alla sensibilita dello studente.

Alcune delle soluzioni presentate constano di un unico file avente estensio-
ne .cpp. In altri casi é stato presentato un approccio pitt modulare, mediante
separazione del codice su piu files (aventi estensioni .h e .cpp), enfatizzando
in misura ancora maggiore i diversi moduli di cui l'astrazione ¢ di volta in
volta costituita.

Per ognuno degli esercizi, oltre alla traccia, si fornisce la soluzione con-
sistente nell’implementazione dei metodi conformi all’interfaccia specificata
dalla traccia. Nel caso in cui la traccia richieda di realizzare una struttura
dati completa (e non solo i metodi basati su di essa), nella soluzione viene an-
che fornito un modulo di test (di solito rappresentato dalla funzione main())
utile esclusivamente al collaudo delle funzionalita della classe.

Al fine di preservare una maggiore generalita delle strutture dati realizza-
te, un esplicito requisito comune a tutti gli esercizi consiste nel vietare 1'uso
dei meccanismi di I/O nell’implementazione dei metodi della classe. La re-
sponsabilita di prelevare i dati da tastiera e mostrare i risultati sulla console
viene pertanto delegata al modulo di test. Un’unica deroga a questa regola é
relativa al metodo di visita delle strutture (di solito contrassegnato dal nome
Stampa()): il concetto di iteratore, utile ad astrarre l'attraversamento di una
struttura contenitore, non € di solito noto agli studenti di un corso di base.
Il lettore interessato puo fare riferimento alla Standard Template Library
(STL) [4], peraltro di notevole utilita in reali contesti di sviluppo software.
Per le operazioni di I/O si utilizzano le funzionalita messe a disposizione dalla
libreria standard iostream, ed in particolare dai suoi oggetti cin e cout.

Spesso nelle tracce non ¢ richiesta I'implementazione di un costruttore
di copia oppure di un operatore di assegnazione. Questi due metodi rien-
trano tra quelli che, se non definiti in una classe, vengono automaticamente
sintetizzati dal compilatore e, se invocati dall’'utente, producono una copia
superficiale dell’oggetto (shallow-copy). Se questo comportamento é scorret-
to — o comunque indesiderato — € possibile rendere del tutto indisponibili
le funzionalita di copia o assegnazione tra oggetti della classe. Cio si ottiene
dichiarando nella sezione private della classe i due metodi in questione e
non fornendone alcuna implementazione [5]. Cosi facendo, qualsiasi costrut-
to che finisca per invocare uno di questi due metodi produrra un errore di

Prefazione 8

compilazione. Tale tecnica viene spesso utilizzata nelle soluzioni degli esercizi
presentati.

Compilare i sorgenti

Tutti i sorgenti presentati sono stati compilati con la versione 3.3.1 del-
la suite di compilazione GNU/GCC [6], utilizzando le seguenti opzioni di
compilazione:

-Wall -ansi -pedantic

L’opzione -Wall richiede al compilatore di non inibire la maggior parte
dei messaggi di warning che, pur non compromettendo la corretta compila-
zione del programma, sono sintomi di imprecisioni all'interno del codice. Le
altre due opzioni inducono il compilatore ad accettare esclusivamente codice
strettamente aderente allo standard ISO-C++ [7], rifiutando la compilazione
di eventuali estensioni non standard del linguaggio.

Il codice sorgente delle soluzioni € stato scritto utilizzando ’ambiente
di sviluppo Dev-C+-+ (8], nella sua versione 4.9.9.0, utilizzabile su sistemi
operativi della famiglia Microsoft’ Windows. Tale software consiste di un
editor grafico che funge da interfaccia per le operazioni di stesura, compilazio-
ne e debugging del codice sorgente, oltre a fornire ed installare anche la suite
di compilazione GNU/GCC. In ogni caso, purché si disponga di un compila-
tore conforme allo standard ISO-C-++-, qualsiasi altro ambiente di sviluppo,
o anche un semplice editor di testi, possono essere considerati validi ai fini
della stesura del codice sorgente.

Uno sguardo al futuro

Quelli che alla fine di questo eserciziario penseranno: “Si, e allora?”, proba-
bilmente sono pronti per affrontare uno studio piu approfondito della pro-
grammazione, che non si esaurisce con il possesso delle nozioni su un lin-
guaggio. Tra un individuo che conosca un linguaggio di programmazione ed
un programmatore esperto c¢’¢ un differenza analoga a quella che esiste tra
un individuo che sappia scrivere ed uno scrittore. Un buon programmatore
non é quello che sa affrontare la complessita, ma quello che sa dominar-
la. Certamente la conoscenza della sintassi del linguaggio ¢ un primo passo
indispensabile, ma chi vuole approfondire questa materia non puo fare a me-
no di acquisire le nozioni della progettazione, le buone prassi per la stesura
del codice e gli strumenti forniti dalle librerie standard oggi disponibili. E

Prefazione 9

solo attraverso questa strada che diviene possibile scrivere applicazioni non
banali, preservandone le caratteristiche di comprensibilita, estensibilita, ma-
nutenibilita, correttezza e, in una sola parola, di qualita. Programmare uti-
lizzando 'incapsulamento, il polimorfismo, i meccanismi delle eccezioni, delle
asserzioni, dei templates, le numerose librerie pitt 0 meno standard, significa
disporre di strumenti semanticamente molto potenti, oltre che ben consolida-
ti; significa delegare al compilatore lo svolgimento di una serie di operazioni
e di controlli che, in alternativa, peserebbero sulle spalle del programmatore,
oppure non verrebbero messi in essere affatto.

Si pensi ad esempio al seguente semplice problema: si vuole realizzare un programma
C++ che, data una stringa di testo comunque lunga, calcoli I'occorrenza delle parole
contenute in essa. Utilizzando esclusivamente i costrutti messi a disposizione dal linguaggio
sarebbe necessario procedere secondo i seguenti passi:

1. progettazione di una struttura dati capace di contenere sequenze di caratteri co-
munque lunghe;

2. progettazione di una struttura ad accesso tabellare capace di contenere coppie del
tipo (stringa,intero);

3. progettazione di un algoritmo che analizzi la stringa, la scomponga nelle singole
parole componenti e popoli coerentemente la struttura tabellare.

Utilizzando invece quanto messo a disposizione dalla libreria STL [4], il programma
suddetto apparirebbe come segue:

int main() {
string buf;
map<string ,int> m;
while (cin >> buf)
m| buf]++;

Una volta che la STL sia stata acquisita, i vantaggi di un tale approccio risultano
evidenti relativamente agli aspetti di (i) tempo di stesura; (ii) correttezza del codice; (iii)
individuazione degli errori; (iv) comprensibilita; (v) manutenibilitd; (vi) estensibilita; (vii)

aderenza agli standard.

Nell’apprendere le nozioni della progettazione e le buone prassi per la
stesura del codice, ascoltare cosa hanno da dirci ‘i giganti’ al proposito, puo
servire molto. A questo scopo non si pud fare a meno di citare dei testi
disponibili in letteratura, universalmente considerati dei classici.

Design Patterns |9] é probabilmente il piti bel testo mai scritto nell’ambito
della progettazione software, considerando anche le profonde ripercussioni
che esso ha poi avuto sul concetto di buona progettazione software orientata
agli oggetti, tanto da essere ancora oggi il libro di gran lunga piu citato
nel suo genere. In questo testo gli autori introducono il concetto di pattern

Prefazione 10

progettuale software (design pattern); ad un livello di astrazione superiore a
quello di qualsiasi linguaggio di programmazione, presentano poi 55 soluzioni
a problemi comuni nell’ambito della progettazione, con esempi in linguaggio
C++. Imperdibile.

In programmazione un problema puo essere spesso risolto seguendo un no-
tevole numero di differenti strade, ognuna delle quali assoggetta il program-
matore ad accettare determinati compromessi. I due libri Effective C++ [5]
e More Effective C++ [10] contengono una collezione di linee guida utili a
comprendere cosa fare — e cosa non fare — con il linguaggio C++. Una nu-
trita schiera di programmatori ha assimilato da questi due testi un corretto
stile di programmagzione, ed ha imparato ad evitare i ricorrenti trabocchetti
in agguato durante le fasi di stesura di codice in linguaggio C++. Il successo
di questi testi & tale che oggi il compilatore GNU/GCC ¢é dotato di un’opzio-
ne di compilazione che produce dei warnings in caso di violazione delle linee
guida contenute in Effective C++".

Chi voglia realmente approfondire la propria conoscenza del C++, non
puo fare a meno di assimilare le tecniche di programmazione basate sul mecca-
nismo dei template e della programmazione generica (generic programming).
Modern C++ Design [11] é particolarmente illuminante sotto questo punto di
vista. Il libro apre le porte ad un utilizzo estremamente elegante dei template,
inimmaginato perfino da chi li aveva originariamente progettati. Seguendo la
sua impostazione nella stesura del software e le sue linee guida si perviene al
progetto di architetture software limpide e snelle, ma contemporaneamente
estremamente potenti e versatili.

Dove trovare questo eserciziario

Questo eserciziario ¢ distribuito sotto licenza GNU Free Documentation Li-
cense (vedi Appendice A) all’indirizzo http://esercizicpp.sourceforge.
net. Dal sito é possibile prelevare 1'ultima versione disponibile, accedere ai
forum dedicati ai lettori ed iscriversi alla mailing-list informativa.

Contattare 1’autore

Commenti, suggerimenti e segnalazioni sono graditi. L’autore pud essere
contattato al seguente indirizzo e-mail: mesposit@unina.it

IL’opzione é&: -Weffc++.

Parte 1

Esercizi

11

Capitolo EL

Esercizi su liste

EL.1 Lista Semplicemente Collegata

Soluzione a pag. 51
Si realizzi la struttura dati Lista. Il tipo TElem degli elementi contenuti sia
uguale al tipo int del linguaggio. La lista sia dotata dei metodi riportati di
seguito.

Nome Param. Ingr. Param. Usc.

Lista() 0] o

Costruttore senza parametri.

Lista() Lista 0]
Costruttore di copia.

“Lista() ¢ ¢
Distruttore.
Inserisci() TElem 10}

Inserimento in testa alla lista.

NumeroElementi () 10} int
Restituisce il numero degli elementi contenuti nella lista.

Svuota() o ¢

Svuota la lista.

Elimina() TElem 10}
Elimina un elemento dalla lista, se presente.

12

EL. Esercizi su liste 13

Stampa () ¢ ¢
Stampa sullo standard output tutti gli elementi contenuti nella lista.

Ricerca() TElem bool
Predicato indicante la presenta di un elemento.

L’unico metodo della classe Lista che puo utilizzare lo standard-output
(cout) ¢ il metodo Stampa(). Gli altri metodi (pubblici, privati o protetti)
non possono fare uso delle funzionalita di stampa.

Si realizzi una funzione main () che permetta di effettuare il collaudo della
struttura dati realizzata.

EL.2 Somma Elementi

Soluzione a pag. 57
Dotare la classe Lista (vedi §EL.1) del metodo Somma () secondo la seguente
specifica.

Nome Param. Ingr. Param. Usc.

Somma () 0] TElem
Restituisce la somma degli elementi presenti nella lista.

EL.3 Coda Pari

Soluzione a pag. 57
Dotare la classe Lista (vedi §EL.1) del metodo CodaPari(), secondo la
seguente interfaccia.

Nome Param. Ingr. Param. Usc.

CodaPari() 10} bool
Restituisce true se ’elemento in coda é pari, false altrimenti.

EL.4 Min e Max

Soluzione a pag. 58
Dotare la classe Lista (vedi §EL.1) del metodo MinMax () secondo la seguente
specifica.

EL. Esercizi su liste 14

Nome Param. Ingr. Param. Usc.
MinMax () 0] TElem,TElem
Restituisce gli elementi minimo e massimo all’interno della lista. In
caso di lista vuota 'uscita di questo metodo é non specificata.

EL.5 Lista Statica

Soluzione a pag. 59
Si realizzi la struttura dati Lista secondo un approccio all’allocazione della
memoria di tipo statico. Il tipo TElem degli elementi contenuti sia uguale al
tipo int del linguaggio. La lista sia dotata dei metodi riportati di seguito.

Nome Param. Ingr. Param. Usc.
Lista() ¢ ¢
Costruttore.

“Lista() ¢ ¢
Distruttore.

InserisciInCoda() TElem 10}

Inserisce un elemento in coda alla lista.

Svuota() o ¢

Svuota la lista.

Count ()))

Restituisce il numero degli elementi contenuti nella lista.

Stampa () ¢ ¢
Stampa sullo standard output tutti gli elementi contenuti nella lista.

L’unico metodo della classe Lista che puo utilizzare lo standard-output
(cout) ¢ il metodo Stampa(). Gli altri metodi (pubblici, privati o protetti)
non possono fare uso delle funzionalita di stampa.

EL.6 E Ordinata

Soluzione a pag. 61
Dotare la classe Lista (vedi §EL.5) del metodo EOrdinata(), secondo la
seguente interfaccia.

EL. Esercizi su liste 15

Nome Param. Ingr. Param. Usc.
EOrdinata() 0] bool
Restituisce true se la lista é ordinata secondo la relazione di
ordinamento crescente per gli interi, false altrimenti.

EL.7 Elimina Tutti

Soluzione a pag. 61
Dotare la classe Lista (vedi §EL.5) del metodo EliminaTutti(), secondo la
seguente interfaccia.

Nome Param. Ingr. Param. Usc.
EliminaTutti() TElem int

Elimina tutte le occorrenze dell’elemento specificato presenti nella
lista. Restituisce il numero di occorrenze eliminate.

EL.8 Elimina Ultimi

Soluzione a pag. 62
Dotare la classe Lista (vedi §EL.1) dei metodi le cui interfacce sono riportate
di seguito.

Nome Param. Ingr. Param. Usc.
EliminaUltimi () unsigned int unsigned int
Elimina dalla lista gli ultimi n elementi, con n pari al valore del
parametro di ingresso. Il valore restituito ¢ pari al numero di elementi
effettivamente eliminati dalla lista.

LasciaPrimi() unsigned int unsigned int
Elimina dalla lista tutti gli elementi tranne i primi n, con n pari al
valore del parametro di ingresso. Il valore restituito ¢ pari al numero
di elementi effettivamente eliminati dalla lista.

EL.9 Somma Coda

Soluzione a pag. 63
Dotare la classe Lista (vedi §EL.1) del metodo SommaCoda(), secondo la
seguente interfaccia.

EL. Esercizi su liste 16

Nome Param. Ingr. Param. Usc.

SommaCoda () 0] 0]
Somma a tutti gli elementi della lista il valore dell’elemento di coda.

EL.10 Sposta Testa in Coda

Soluzione a pag. 64
Dotare la classe Lista (vedi §EL.1) del metodo SpostaTestaInCoda(), se-
condo la seguente interfaccia.

Nome Param. Ingr. Param. Usc.
SpostaTestaInCoda() 0] bool

Sposta in coda alla lista 1’elemento di testa. Il metodo restituisce
true se lo spostamento ¢ effettuato, false altrimenti.

EL.11 Elimina Pari e Dispari

Soluzione a pag. 65
Dotare la classe Lista (vedi §EL.1) dei metodi EliminaElPostoPari() ed
EliminaElPostoDispari (), secondo la seguente interfaccia.

Nome Param. Ingr. Param. Usc.

EliminaElPostoPari() 0] unsigned int
Elimina dalla lista tutti gli elementi di posto pari (0, 2, 4, ...).
Restituisce il numero di elementi eliminati.

EliminaElPostoDispari () 0] unsigned int
Elimina dalla lista tutti gli elementi di posto dispari (1, 3, 5, ...).
Restituisce il numero di elementi eliminati.

EL.12 Lista Doppiamente Collegata

Soluzione a pag. 66
Si realizzi in linguaggio C++ il tipo di dato astratto Lista mediante uso del
costrutto class del linguaggio. L'implementazione deve essere realizzata me-
diante puntatori ed allocazione dinamica della memoria secondo 'approccio

EL. Esercizi su liste 17

e g [* el & [®cii-"I1 e | & *1
first |ast

Figura EL.1: Struttura della lista doppiamente collegata

di lista doppiamente collegata. Ogni elemento, cioé, punta contemporanea-
mente al precedente ed al successivo (vedi Figura EL.1). Gli elementi della
lista siano di tipo TElem uguale al tipo int.

Di seguito é riportata la specifica dei metodi pubblici da implementare
per la classe Lista.

Nome Param. Ingr. Param. Usc.
Lista() ¢ ¢
Costruttore.

“Lista() ¢ ¢
Distruttore.

Inserisci() TElem [0}

Inserisce un elemento in coda alla lista.

Svuota() o ¢

Svuota la lista.

Count () 0] unsigned int
Conta gli elementi contenuti nella lista.

StampaDiretta() 0] 0]
Stampa il contenuto della lista sullo standard output, dall’elemento
di testa all’elemento di coda.

StampalInversa() 10} 10}
Stampa il contenuto della lista sullo standard output, dall’elemento
di coda all’elemento di testa.

StampaAlternata() 0] 0]

Stampa il contenuto della lista nel seguente ordine: primo elemen-
to, ultimo elemento, secondo elemento, penultimo elemento, terzo
elemento, terzultimo elemento...

EL. Esercizi su liste 18

Gli unici metodi della classe Lista che possono utilizzare lo standard-
output (cout) sono i metodi di stampa. Gli altri metodi (pubblici, privati o
protetti) non possono fare uso degli oggetti per 1'I/0O.

Si realizzi una funzione main () che permetta di effettuare il collaudo della
struttura dati realizzata.

EL.13 Ribalta

Soluzione a pag. 69
Dotare la classe Lista (vedi §EL.1) del metodo Ribalta() secondo la se-
guente specifica.

Nome Param. Ingr. Param. Usc.
Ribalta() o o

Ribalta la posizione di tutti gli elementi della lista. Alla chiamata di
tale metodo il primo elemento diventa 'ultimo, il secondo diventa il
penultimo. .. 'ultimo diventa il primo.

Capitolo EA

Esercizi su alberi binari

EA.1 Albero Binario

Soluzione a pag. 73
Realizzare la classe AlberoBinario. Il tipo TElem dei suoi elementi sia il
tipo int e gli elementi risultino ordinati secondo la relazione di ordinamento
crescente per gli interi. L’implementazione di tutti i metodi sia basata su
appositi metodi ricorsivi. L’interfaccia della classe sia la seguente.

Nome Param. Ingr. Param. Usc.

AlberoBinario() 10} 10}
Costruttore della struttura.

AlberoBinario() AlberoBinario 10}
Costruttore di copia.

~AlberoBinario()) 0]
Distruttore della struttura.

AggiungiElem() TElem 0]
Metodo di aggiunta di un elemento all’albero.

InAlb() TElem bool
Ricerca un elemento nell’albero. Restituisce true nel caso in cul
I’elemento specificato sia presente nell’albero, false altrimenti.

Elimina() TElem 10}
Elimina I’elemento specificato dall’albero.

Svuota() o ¢

Svuota la struttura.

19

EA. Esercizi su alberi binari 20

PreOrdine () ¢)
Effettua una visita in pre-ordine dell’albero, stampando tutti gli
elementi sullo standard output.

PostOrdine () 0] 10}
Effettua una visita in post-ordine dell’albero, stampando tutti gli
elementi sullo standard output.

InOrdine () 10) 10)
Effettua una visita in ordine dell’albero, stampando tutti gli elementi
sullo standard output.

Gli unici metodi della classe AlberoBinario che possono utilizzare lo
standard-output (cout) sono i metodi di visita dell’albero (InOrdine(),
PreOrdine(), PostOrdine()). Gli altri metodi (pubblici, privati o protetti)
non possono fare uso delle funzionalita di stampa.

Si realizzi una funzione main () che permetta di effettuare il collaudo della
struttura dati realizzata.

EA.2 Numero Elementi

Soluzione a pag. 79
Dotare la classe AlberoBinario (vedi §EA.1) del metodo NumElem() secondo
la seguente specifica.

Nome Param. Ingr. Param. Usc.

NumElem() 0] unsigned int
Restituisce il numero degli elementi presenti nell’albero.

EA.3 Occorrenze

Soluzione a pag. 79
Dotare la classe AlberoBinario (vedi §EA.1) del metodo Occorrenze(),
secondo la seguente interfaccia.

Nome Param. Ingr. Param. Usc.

Occorrenze () TElem unsigned int
Restituisce le occorrenze dell’elemento specificato nell’albero.

EA. Esercizi su alberi binari 21

EA.4 Occorrenza Massima

Soluzione a pag. 80
Modificare la classe AlberoBinario (vedi §EA.1) per prevedere un’occorren-
za massima degli elementi in esso inseriti. Piu precisamente, il costruttore
deve accettare come parametro di ingresso un numero intero positivo (per es.
maxocc); I'inserimento di un nuovo elemento nell’albero deve andare a buon
fine solo se tale elemento é presente con occorrenza minore di maxocc.
Di seguito é riportata la specifica dei due metodi pubblici da implementare
per la classe AlberoBinario.

Nome Param. Ingr. Param. Usc.

AlberoBinario() unsigned int 0]

Costruttore con parametro di ingresso di tipo intero non negativo. 1l
parametro di ingresso rappresenta l'occorrenza massima con cui gli
elementi potranno essere presenti nell’albero.

Inserisci() TElem bool

Inserisce 1’elemento specificato nell’albero solo se esso é presen-
te con occorrenza minore dell’occorrenza massima specificata nel
costruttore.

Il metodo restituisce true o false a seconda che l'inserimento sia
avvenuto o meno.

EA.5 Profondita Limitata

Soluzione a pag. 81
Modificare la classe AlberoBinario (vedi §EA.1) per prevedere il non su-
peramento di una profondita massima specificata all’atto della costruzione
della struttura.
Di seguito ¢ riportata la specifica dei due nuovi metodi pubblici da im-
plementare per la classe AlberoBinario:

Nome Param. Ingr. Param. Usc.
AlberoBinario () unsigned int 0]

Costruttore con parametro intero non negativo. Il parametro di in-
gresso indica la massima profondita che ’albero puo assumere durante
il suo ciclo di vita.

EA. Esercizi su alberi binari 22

Inserisci() TElem bool

Inserisce in maniera ordinata 1’elemento specificato nell’albero solo se
esso non supera la massima profondita prevista per l'albero. Il me-
todo restituisce true se ’elemento ¢ stato inserito nell’albero, false
altrimenti.

EA.6 Somma

Soluzione a pag. 82
Dotare la classe AlberoBinario (vedi §EA.1) del metodo Somma () secondo
la seguente specifica.

Nome Param. Ingr. Param. Usc.
Somma () TElem 10}

Somma ad ogni elemento dell’albero il valore intero specificato come
parametro di ingresso.

EA.7 Sostituisci

Soluzione a pag. 83
Dotare la classe AlberoBinario (vedi §EA.1) del metodo Sostituisci()
secondo la seguente specifica.

Nome Param. Ingr. Param. Usc.
Sostituisci() TElem,TElem unsigned int
Detti i e j i parametri di ingresso al metodo, sostituisce tutte le
occorrenze dell’elemento i con l'elemento j. Restituisce il numero di
sostituzioni effettuate.

N.B.: questo metodo in generale non preserva la proprieta di ordinamento
dell’albero. Si assuma comunque che questo metodo agisca sempre su un
albero ordinato.

EA.8 Conta Min e Max

Soluzione a pag. 83
Dotare la classe AlberoBinario (vedi §EA.1) del metodo ContaMinMax (),
secondo la seguente specifica.

EA. Esercizi su alberi binari 23

Nome Param. Ingr. Param. Usc.
ContaMinMax () TElem,TElem unsigned int
Restituisce il numero degli elementi presenti nell’albero il cui valore
€ compreso tra gli interi Min e Max passati in ingresso al metodo,
estremi inclusi.

EA.9 Profondita Maggiore di Due

Soluzione a pag. 84
Dotare la classe AlberoBinario (vedi §EA.1) del metodo ProfMaggioreDi-
Due () secondo la seguente specifica.

Nome Param. Ingr. Param. Usc.
ProfMaggioreDiDue () 0] bool

Predicato che indica se la profondita dell’albero ¢é strettamente mag-
giore di 2. Restituisce true nel caso in cui la condizione sia verificata,
false altrimenti.

EA.10 Profondita Maggiore Di

Soluzione a pag. 84
Dotare la classe AlberoBinario (vedi §EA.1) del metodo ProfMaggioreDi ()
secondo la seguente specifica.

Nome Param. Ingr. Param. Usc.

ProfMaggioreDi () unsigned int bool

Predicato che indica se la profondita dell’albero é strettamente mag-
giore del valore intero rappresentato dal parametro di ingresso. Re-
stituisce true nel caso in cui la condizione sia verificata, false
altrimenti.

EA.11 Profondita Massima

Soluzione a pag. 85
Dotare la classe AlberoBinario (vedi §EA.1) del metodo Profondita(),
secondo la seguente interfaccia.

EA. Esercizi su alberi binari 24

Nome Param. Ingr. Param. Usc.
Profondita() TElem int,bool
Restituisce la profondita dell’elemento specificato dal parametro di
ingresso. In caso di occorrenze multiple, restituisce la profondita
massima. Restituisce inoltre un valore booleano che informa se tale
elemento ¢ o meno una foglia dell’albero. Nel caso in cui ’elemento
non fosse presente nell’albero, il metodo restituisce il valore -1.

EA.12 Somma Livello

Soluzione a pag. 85
Dotare la classe AlberoBinario (vedi §EA.1) del metodo SommaLivello ()
secondo la seguente specifica.

Nome Param. Ingr. Param. Usc.
SommaLivello () TElem [0}

Somma ad ogni elemento dell’albero un valore intero pari al livello
del corrispondente nodo. Per es.: al nodo radice verra aggiunto 1, ai
suoi figli diretti 2... ecc.

N.B.: questo metodo in generale non preserva la proprieta di ordinamento
dell’albero.

EA.13 Eliminazione Foglia

Soluzione a pag. 86
Dotare la classe AlberoBinario (vedi §E£A.1) del metodo EliminaFoglia()
secondo la seguente specifica.

Nome Param. Ingr. Param. Usc.
EliminaFoglia() TElem bool

Elimina dall’albero I’elemento specificato se e solo se esso € presente
ed é una foglia. Il metodo restituisce true in caso di eliminazione
effettuata, false altrimenti.

EA.14 Eliminazione Foglie

Soluzione a pag. 86
Dotare la classe AlberoBinario (vedi §EA.1) del metodo EliminaFoglie ()
secondo la seguente specifica.

EA. Esercizi su alberi binari 25

Nome Param. Ingr. Param. Usc.
EliminaFoglie() o unsigned int
Elimina dall’albero tutte le foglie. Restituisce il numero di elementi
eliminati.

EA.15 Cerca Foglia

Soluzione a pag. 87
Dotare la classe AlberoBinario (vedi §EA.1) dei due metodi le cui interfacce
sono riportate di seguito.

Nome Param. Ingr. Param. Usc.
CercaFoglia() TElem bool, bool
Predicato che indica se I’elemento specificato dal parametro di ingres-
so ¢ presente nell’albero. Nel caso in cui sia presente, il metodo resti-
tuisce anche un ulteriore valore booleano che indica se esiste almeno
una foglia contenente il valore specificato.

Cercalodo () TElem bool, bool
Predicato che indica se I’elemento specificato dal parametro di ingres-
so € presente nell’albero. Nel caso in cui sia presente, il metodo resti-
tuisce anche un ulteriore valore booleano che indica se esiste almeno
un nodo contenente il valore specificato.

EA.16 Operatore di Confronto

Soluzione a pag. 88
Dotare la classe AlberoBinario (vedi §EA.1) dell’operatore di confronto. Ta-
le operatore viene invocato in seguito alla valutazione della seguente espres-
sione:

al =— a2;

(ad esempio in un costrutto if) dove al ed a2 sono due istanze della classe
AlberoBinario. In questo caso viene invocato 'operatore operator==()
sull’oggetto al, mentre a2, parametro attuale, viene passato per riferimento
prendendo il posto del parametro formale dell’operatore.

Di seguito si riporta la specifica dell’operatore di confronto da realizzare.

EA. Esercizi su alberi binari 26

Nome Param. Ingr. Param. Usc.

operator==() AlberoBinario bool

E Poperatore di confronto tra alberi. Permette di valutare Iesatta
uguaglianza di due alberi. Fornisce true se esso stesso risulta essere
perfettamente uguale all’albero in ingresso (anche strutturalmente),
false altrimenti.

EA.17 Conta Nodi non Foglia

Soluzione a pag. 89
Dotare la classe AlberoBinario (vedi §EA.1) del metodo ContaNodiNon-
Foglia() secondo la seguente specifica.

Nome Param. Ingr. Param. Usc.

ContaNodiNonFoglia() 0] unsigned int
Restituisce il numero di nodi non foglia presenti nell’albero.

EA.18 Conta Nodi

Soluzione a pag. 89
Dotare la classe AlberoBinario (vedi §EA.1) del metodo ContalNodi() se-
condo la seguente specifica.

Nome Param. Ingr. Param. Usc.

ContaNodi () 0] unsigned int,
unsigned int,
unsigned int

Restituisce il numero di nodi dell’albero aventi 0, 1 e 2 figli, rispetti-

vamente.

EA.19 Conta Nodi Sottoalbero

Soluzione a pag. 90
Dotare la classe AlberoBinario (vedi §EA.1) dei metodi aventi l'interfaccia
specificata di seguito.

EA. Esercizi su alberi binari

27

Nome Param. Ingr. Param. Usc.

ContaNodiSottoalb_Min() TElem unsigned int
Conta i nodi del sottoalbero avente come radice I’elemento il cui va-
lore é pari al valore del parametro di ingresso. Nel caso di occorrenze
multiple, la radice viene individuata nell’elemento posizionato al li-
vello dell’albero minore rispetto a tutti gli altri. In caso di assenza
dell’elemento, il metodo restituisce zero. Si consideri anche la radice
del sottoalbero nel conteggio degli elementi.

ContaNodiSottoalb_Max () TElem unsigned int
Conta i nodi del sottoalbero avente come radice I’elemento il cui va-
lore é pari al valore del parametro di ingresso. Nel caso di occorrenze
multiple, la radice viene individuata nell’elemento posizionato al li-
vello dell’albero maggiore rispetto a tutti gli altri. In caso di assenza
dell’elemento, il metodo restituisce zero. Si consideri anche la radice
del sottoalbero nel conteggio degli elementi.

Capitolo EP

Esercizi su pile

EP.1 Push Greater

Soluzione a pag. 93
Si realizzi in linguaggio C++ il tipo di dato astratto Pila mediante uso del
costrutto class del linguaggio e ricorrendo ad un’implementazione dinamica.
Il tipo TElem degli elementi della pila sia il tipo int.
Di seguito é riportata la specifica dei metodi pubblici da implementare
per la classe Pila.

Nome Param. Ingr. Param. Usc.
Pila() o) o
Costruttore senza parametri.

“Pila() o) o
Distruttore.

Push() TElem 0]

Aggiunge sulla pila I’elemento specificato.

PushGreater () TElem bool

Aggiunge sulla pila ’elemento specificato esclusivamente se esso é
maggiore dell’elemento di testa corrente. Nel caso in cui la pila sia
vuota I’aggiunta € sempre eseguita. Restituisce true oppure false a
seconda che 'aggiunta sia stata eseguita oppure no.

Top () 0] TElem
Restituisce ’elemento di testa corrente della pila (ma non lo estrae).
In caso di pila vuota il comportamento di questo metodo ¢ non
specificato.

28

EP. Esercizi su pile 29

Pop() [0) TElem
Estrae e restituisce ’elemento di testa corrente della pila. In caso di
pila vuota il comportamento di questo metodo é non specificato.

Svuota()))

Svuota la pila.

Count () 0] unsigned int
Restituisce il numero di elementi presenti nella pila.

Empty () 0] bool
Predicato vero se la pila é vuota, falso altrimenti.

Si realizzi una funzione main () che permetta di effettuare il collaudo della
struttura dati realizzata.

Nessuno dei metodi della classe puod utilizzare operazioni che coinvolgono
gli stream di input ed output (cin e cout). La scrittura e la lettura su stream
sono concesse esclusivamente all’interno del programma main().

EP.2 Push If

Soluzione a pag. 96
Si modifichi la classe Pila dell’esercizio §EP.1 per renderla conforme ai
metodi specificati di seguito:

Nome Param. Ingr. Param. Usc.

Pila() unsigned int 0]

Costruttore con parametro. Il parametro di ingresso indica il numero
di inserimenti massimi consecutivi possibili (vedi anche specifiche del
metodo Push()).

Push() TElem bool

Aggiunge sulla pila ’elemento specificato se non é stato superato il
numero massimo di inserimenti consecutivi (cioé non intervallati da
alcun prelievo con il metodo Pop() o da uno svuotamento completo
della lista con il metodo Svuota()). Nel caso in cui tale numero, spe-
cificato dal parametro di ingresso del costruttore, sia stato superato,
I’inserimento non avviene ed il metodo restituisce false. Altrimenti
restituisce true.

EP. Esercizi su pile

30

Pop() [0) TElem

Estrae e restituisce I’elemento di testa corrente della pila. Azzera il
conteggio degli inserimenti. In caso di pila vuota il comportamento
di questo metodo é non specificato.

Svuota()))

Svuota la pila ed azzera il conteggio degli inserimenti.

Capitolo EC

Esercizi su code

EC.1 Coda

Soluzione a pag. 99
Si realizzi in linguaggio C++ il tipo di dato astratto Coda mediante uso del
costrutto class del linguaggio e ricorrendo ad un’implementazione dinamica.
Il tipo TElem degli elementi della coda sia il tipo int.
Di seguito é riportata la specifica dei metodi pubblici da implementare
per la classe Coda.

Nome Param. Ingr. Param. Usc.
Coda() ¢ ¢
Costruttore senza parametri.

~Coda() ¢ ¢
Distruttore.

Push () TElem 0]

Accoda I’elemento specificato.

Top() [0) TElem
Restituisce I’elemento di testa corrente della coda (ma non lo estrae).
In caso di coda vuota il comportamento di questo metodo € non
specificato.

Pop () 0] TElem

Estrae e restituisce ’elemento di testa corrente presente in coda.
In caso di coda vuota il comportamento di questo metodo € non
specificato.

31

EC. Esercizi su code 32

Somma () 10} TElem
Restituisce la somma di tutti gli elementi presenti in coda.

Svuota() o ¢

Svuota la coda.

Count () o unsigned int
Restituisce il numero di elementi presenti nella coda.

Empty () [0) bool
Predicato vero se la coda ¢ vuota, falso altrimenti.

Si realizzi una funzione main () che permetta di effettuare il collaudo della
struttura dati realizzata.

Nessuno dei metodi della classe puo utilizzare operazioni che coinvolgono
gli stream di input ed output (cin e cout). La scrittura e la lettura su stream
sono concesse esclusivamente all’interno del programma main().

EC.2 Coda con Perdite

Soluzione a pag. 103
Si realizzi in linguaggio C++ il tipo di dato astratto Coda mediante uso del
costrutto class del linguaggio. Il tipo TElem degli elementi della coda sia il
tipo int.
Di seguito é riportata la specifica dei metodi pubblici da implementare
per la classe Coda.

Nome Param. Ingr. Param. Usc.
Coda () unsigned int 0]

Costruttore con parametro intero. Il parametro indica il numero mas-
simo di posti in coda, oltre il quale non deve essere possibile inserire
ulteriori elementi.

~Codal() o ¢
Distruttore.
Push() TElem bool

Accoda l'elemento specificato. Restituisce true in caso di elemento
accodato, false altrimenti.

EC. Esercizi su code 33

Top() [0) TElem
Restituisce I’elemento di testa corrente della coda (ma non lo estrae).
In caso di coda vuota il comportamento di questo metodo € non
specificato.

Pop () 0] TElem

Estrae e restituisce ’elemento di testa corrente presente in coda.
In caso di coda vuota il comportamento di questo metodo € non
specificato.

Pop () unsigned int TElem

Estrae tanti elementi quanti specificati dal parametro di ingresso e
restituisce solo il primo di questi, cioé I'elemento presente in testa
precedentemente alla chiamata al metodo. Rappresenta una versione
overloaded del metodo precedente. Nel caso in cui la coda risulti
vuota all’atto della chiamata al metodo, il comportamento risultante
é non specificato.

Svuota()))

Svuota la coda.

Count () 0] unsigned int
Restituisce il numero di elementi presenti nella coda.

Empty () 0] bool
Predicato vero se la coda é vuota, falso altrimenti.

Si realizzi una funzione main () che permetta di effettuare il collaudo della
struttura dati realizzata.

Nessuno dei metodi della classe puod utilizzare operazioni che coinvolgono
gli stream di input ed output (cin e cout). La scrittura e la lettura su stream
sono concesse esclusivamente all’interno del programma main().

EC.3 Coda a Priorita

Soluzione a pag. 107
Si realizzi in linguaggio C++ il tipo di dato astratto PriorityQueue me-
diante uso del costrutto class del linguaggio. Il tipo TElem degli elementi
della coda sia il tipo int. La struttura permette di accodare elementi che
possono avere due differenti livelli di priorita: high (alta) e low (bassa). Un
elemento a bassa priorita viene sempre accodato alla struttura. Un elemento

EC. Esercizi su code 34

a priorita alta ha invece la precedenza sugli elementi a priorita bassa, ma
non sugli elementi a priorita alta eventualmente gia presenti nella struttura.

Di seguito é riportata la specifica dei metodi pubblici da implementare
per la classe Coda.

Nome Param. Ingr. Param. Usc.
PriorityQueue() o ¢
Costruttore.

“PriorityQueue () o ¢
Distruttore.

PushLow () TElem 0]

Accoda un elemento a bassa priorita.

PushHigh () TElem 10}
Accoda un elemento ad alta priorita.

Pop() [0) TElem

Estrae e restituisce il primo elemento ad alta priorita o, in sua as-
senza, il primo elemento a bassa priorita. In caso di coda vuota il
comportamento di questo metodo € non specificato.

Svuota() o ¢

Svuota la coda.

Empty () 0] bool
Predicato vero se la coda é vuota, falso altrimenti.

Si realizzi una funzione main () che permetta di effettuare il collaudo della
struttura dati realizzata.

Nessuno dei metodi della classe puod utilizzare operazioni che coinvolgono
gli stream di input ed output (cin e cout). La scrittura e la lettura su stream
sono concesse esclusivamente all’interno del programma main().

EC.4 PopMinMax

Soluzione a pag. 112
Dotare la classe Coda (vedi §EC.1) dei metodi PopMax () e PopMin() secondo
la seguente specifica.

EC. Esercizi su code

35

Nome Param. Ingr. Param. Usc.

PopMax () unsigned int TElem

Detto n il valore del parametro di ingresso di tipo intero, il metodo
estrae i primi n valori di testa della struttura e restituisce il massimo
tra questi. In caso di coda vuota il comportamento di questo metodo
é non specificato.

PopMin () unsigned int TElem

Detto n il valore del parametro di ingresso di tipo intero, il metodo
estrae 1 primi n valori di testa della struttura e restituisce il minimo
tra questi. In caso di coda vuota il comportamento di questo metodo
é non specificato.

Capitolo EX

Altri esercizi

EX.1 Accumulatore

Soluzione a pag. 113

Si realizzi la classe Accumulatore conforme all’interfaccia seguente.

Nome Param. Ingr. Param. Usc.

Accumulatore() 10} 10}
Costruttore della classe.

Add () float b
Aggiunge all’accumulaotre il valore specificato dal parametro di
ingresso.

Reset () 10} 10}

Agzzera 'accumulatore.

GetValue () 10} float
Restituisce il valore corrente dell’accumulatore.

EX.2 Cifratore

Soluzione a pag. 114
Implementare la classe Cifratore con la capacita di cifrare stringhe di ca-
ratteri attraverso uno slittamento del codice ASCII dei caratteri componenti
la stringa (c.d. codice di Cesare). L’interfaccia della classe sia la seguente:

36

EX. Altri esercizi 37

Nome Param. Ingr. Param. Usc.
Cifratore() int)

Costruttore della classe. Imposta la costante intera di slittamento
che il cifratore utilizza per crittografare le stringhe.

Cifra() char char

Metodo di cifratura. Accetta la stringa da cifrare e ne restituisce la
versione cifrata. La cifratura consiste in uno slittamento (shift) dei
codici ASCII di ogni singolo carattere della stringa.

Decifra() char char
Metodo di decifratura. Accetta la stringa cifrata attraverso il metodo
Cifra() e ne restituisce nuovamente la versione decifrata.

EX.3 Lista Della Spesa

Soluzione a pag. 115
Si realizzi in linguaggio C++ il tipo di dato astratto ListaDellaSpesa me-
diante uso del costrutto class del linguaggio e ricorrendo ad un’implemen-
tazione dinamica. I metodi della struttura dati possono essere implementati
utilizzando indifferentemente algoritmi iterativi o ricorsivi. Gli elementi della
lista siano del tipo Articolo specificato di seguito:

typedef char Nome[20];
typedef float Quantita;

struct Articolo {

Nome n;
Quantita q;
I
Di seguito si riporta la specifica dei metodi da implementare.
Nome Param. Ingr. Param. Usc.
ListaDellaSpesal() 0] o
Costruttore.
“ListaDellaSpesa() 0] 0]

Distruttore.

EX. Altri esercizi 38

Aggiungi() Nome,Quantita Quantita

Se nella lista non e gia presente alcun altro elemento con lo stesso
nome, inserisce ’elemento specificato (nella quantita specificata) in
coda alla lista. Nel caso in cui invece 'elemento fosse gia presente
nella lista, vi aggiunge la quantita specificata.

Il metodo restituisce la quantita con cui l'articolo specificato &
presente nella lista in seguito all’aggiunta.

Elimina() Nome bool

Elimina dalla lista I’elemento avente il nome specificato (se presente).
Il metodo restituisce true se é stato cancellato un elemento, false
altrimenti.

GetQuantita() Nome Quantita
Restituisce la quantita dell’elemento presente nella lista ed avente il
nome specificato. Se I’elemento non é presente restituisce zero.

Svuota()))

Svuota la lista.

Stampa () ¢ ¢
Stampa il contenuto dell’intera lista nel formato Nome: Quantita,
Nome: Quantita,

L’unico metodo della classe ListaDellaSpesa che puo stampare sullo
standard-output (cout) ¢ il metodo Stampa(). Gli altri metodi (pubblici,
privati o protetti) non possono fare uso delle funzionalita di stampa.

Si realizzi una funzione main () che permetta di effettuare il collaudo della
struttura dati realizzata.

EX.4 Predittore di Temperatura

Soluzione a pag. 119
Realizzare la classe TempPredictor che svolga la funzione di predittore di
temperatura. Tale oggetto deve essere capace di fornire una stima della
temperatura in un certo istante futuro di tempo. La stima & operata a
partire da dati presenti e passati forniti dall'utente sui valori di temperatura
misurati attraverso ipotetici sensori.
Si supponga che la stima sia ottenuta mediante estrapolazione lineare
delle ultime due temperature fornite dall’utente della classe. Per esempio,
se I'utente comunica all’oggetto che la temperatura all’istante 0 € pari a 14°

EX. Altri esercizi 39

e che all’istante 5 é pari a 16°, una richiesta della stima della temperatura
all’istante 10 produrrebbe come risultato 18°.
Si consideri la seguente interfaccia della classe.

Nome Param. Ingr. Param. Usc.
TempPredictor () Time,Temp 0]

Costruttore della classe. Accetta in ingresso una prima lettura reale
della temperatura, insieme all’istante in cui questa é stata campionata
da un ipotetico sensore.

SetTemp () Time, Temp 10)
Fornisce al predittore un ulteriore valore di temperatura campionato
ed il relativo istante di campionamento.

EstimateTemp () Time Temp
Richiede al predittore di effettuare una stima della temperatura in
un particolare istante di tempo specificato.

Il costruttore accetta in ingresso un primo valore della temperatura ad
un certo istante di tempo. In assenza di altri dati la stima sara pari pro-
prio a questo valore. (Qualsiasi chiamata ad EstimateTemp(), cioé, fornira
come risultato il valore di temperatura specificato all’atto della chiamata
del costruttore!. Successivamente I'utente comunichera all’oggetto nuovi va-
lori della temperatura attraverso ripetute chiamate al metodo SetTemp (),
specificandone anche i relativi istanti di tempo.

EX.5 Contenitore

Soluzione a pag. 121
Si realizzi in linguaggio C+-+ il tipo di dato astratto Contenitore mediante
uso del costrutto class del linguaggio. Un Contenitore puo contenere istanze
del tipo Oggetto, definito come segue:
const int NMAX = 50;

typedef char Nome[NMAX];
typedef int Peso;

struct Oggetto {
Nome n;
Peso p;

}s

1Cio permette al predittore di operare non appena divenga disponibile un primo
campionamento della temperatura.

EX. Altri esercizi 40

Inoltre, ogni contenitore pud ospitare oggetti fino al raggiungimento di
un peso complessivo massimo, oltre il quale nessun altro oggetto puo essere
ospitato.

Di seguito é riportata la specifica dei metodi pubblici da implementare
per la classe Contenitore.

Nome Param. Ingr. Param. Usc.
Contenitore() Peso 10}

Costruttore con parametro di tipo Peso. Il parametro indica il
peso massimo raggiungibile dalla totalita degli oggetti presenti nel
contenitore.

~Contenitore()) ¢
Distruttore.
Inserisci() Nome,Peso bool

Inserisce nel contenitore un oggetto avente il nome e il peso specifi-
cato. Il metodo restituisce true se I'inserimento va a buon fine, cioé
se il peso dell’elemento da inserire non eccede la capacita residua del
contenitore, false altrimenti.

Svuota() o ¢

Svuota il contenitori di tutti gli oggetti presenti in esso.

PesoComplessivo () 0] Peso
Restituisce il peso complessivo raggiunto dal contenitore.

PesoResiduo () 0] Peso
Restituisce il peso residuo per il raggiungimento della capacita
massima del contenitore.

NumElem() 0] unsigned int
Restituisce il numero di oggetti presenti nel contenitore.

Stampa () 0 ¢
Stampa le coppie (Nome, Peso) di tutti gli oggetti presenti nel
contenitore.

L’unico metodo (pubblico, privato o protetto) della classe Contenitore
che puo utilizzare lo standard-output (cout) é il metodo Stampa(). Gli
altri metodi dovranno restituire I’esito delle operazioni eseguite mediante gli
opportuni parametri di passaggio riportati nelle specifiche.

EX. Altri esercizi 41

EX.6 Lista Prenotazioni

Soluzione a pag. 124
Si realizzi in linguaggio C++ il tipo di dato astratto ListaPrenotazioni
mediante uso del costrutto class del linguaggio. La lista deve memorizzare
le prenotazioni di studenti ad un generico evento (uno ed uno solo). Gli
elementi della lista siano del tipo Prenotazione specificato di seguito:

typedef int Matricola;
typedef char Nome[30];

struct Prenotazione {
Matricola mat;
Nome nom ;

=
[metodi da implementare per la classe ListaPrenotazioni siano con-
formi alla seguente interfaccia.

Nome Param. Ingr. Param. Usc.
ListaPrenotazioni() int 10}

Costruttore con parametro intero. Il parametro indica il numero mas-
simo di posti disponibili per ’evento, oltre i quali non deve essere
possibile inserire ulteriori prenotazioni.

“ListaPrenotazioni() 10} 10}
Distruttore.
Prenotal() Matricola,Nome bool

Se nella lista non é gia presente alcuna altra prenotazione con lo
stesso numero di matricola e se ci sono posti disponibili, inserisce
una nuova prenotazione in coda alla lista. Il metodo restituisce 1’esito
dell’operazione.

EliminaPrenotazione () Matricola boolt

Elimina dalla lista la prenotazione relativa al campo matricola spe-
cificato (se presente). Il metodo restituisce true se é stato eliminato
un elemento, false altrimenti.

GetPostiDisponibili() 0] int
Restituisce il numero di posti ancora disponibili.

EsistePrenotazione () Matricola bool
Restituisce true se esiste la prenotazione relativa al numero di
matricola specificato, false altrimenti.

EX. Altri esercizi 42

Svuota() o ¢

Svuota la lista.

Stampa () ¢ ¢
Stampa il contenuto dell’intera lista nel formato seguente: Matrico-
lal: Nomel, Matricola2: Nome2, Matricola3d: Nome3,

L’unico metodo della classe ListaPrenotazioni che puo utilizzare lo
standard-output (cout) ¢ il metodo Stampa(). Gli altri metodi (pubblici,
privati o protetti) non possono fare uso degli stream di I/O.

Si realizzi una funzione main () che permetta di effettuare il collaudo della
struttura dati realizzata.

EX.7 Classifica

Soluzione a pag. 128
Si realizzi in linguaggio C+-+ il tipo di dato astratto Classifica mediante
uso del costrutto class del linguaggio. L'implementazione deve essere realiz-
zata mediante puntatori ed allocazione dinamica della memoria. Gli elementi
della lista siano di tipo TElem, definito nel modo seguente:

const int NMAX = 50;
typedef char Nome|[NMAX]; //Nome delle squadre

typedef struct {

Nome n;

unsigned int punteggio;
} Squadra;

typedef Squadra TElem;

Di seguito é riportata la specifica dei metodi pubblici da implementare
per la classe Classifica.

Nome Param. Ingr. Param. Usc.
Classifica() o ¢
Costruttore.

~Classifica() o) ¢

Distruttore.

EX. Altri esercizi 43

Aggiungi() Nome,unsigned unsigned int
int

Se la squadra non é gia presente, la aggiunge alla struttura e le as-

segna il punteggio specificato. Nel caso di squadra gia presente, ag-

giunge il punteggio specificato a quello gia totalizzato. Restituisce il

numero di punti correntemente totalizzati dalla squadra.

Svuota() o ¢

Svuota la struttura.

Stampa () 0 ¢
Stampa la classifica delle squadre presenti nella struttura, in ordine
decrescente di punteggio.

Count () 0] unsigned int
Conta gli elementi contenuti nella struttura.

L’unico metodo della classe Classifica che puo utilizzare lo standard-
output (cout) é il metodo Stampa(). Gli altri metodi (pubblici, privati o
protetti) non possono fare uso degli oggetti per 1'I/O.

Si realizzi una funzione main () che permetta di effettuare il collaudo della
struttura dati realizzata.

Suggerimento: ’aggiornamento di un punteggio nella struttura puo essere
convenientemente realizzato attraverso la composizione di un’eliminazione ed
un inserimento ordinato.

EX.8 Agenzia Matrimoniale

Soluzione a pag. 132
Si realizzi in linguaggio C++- il tipo di dato astratto AgenziaMatrimoniale
mediante uso del costrutto class del linguaggio. L’implementazione deve
essere realizzata mediante puntatori ed allocazione dinamica della memoria.
Gli elementi della lista siano di tipo TElem, definito nel modo seguente:

const int NMAX = 50;
typedef char Nome|[NMAX]; //Nome Persona

struct persona;
typedef struct Personaf{
Nome n;
bool maschio;
Personax coniuge;

}s

EX. Altri esercizi 44

typedef Persona TElem;

Di seguito é riportata la specifica dei metodi pubblici da implementare
per la classe AgenziaMatrimoniale.

Nome Param. Ingr. Param. Usc.
AgenziaMatrimoniale () o o
Costruttore.

“AgenziaMatrimoniale () o o
Distruttore.

AggiungiPersona() Nome ,bool bool

Aggiunge alla struttura la persona avente nome specificato attraverso
i parametri di ingresso, e indica se é maschio (parametro di ingresso
pari a true) o femmina (parametro di ingresso pari a false) Re-
stituisce true in caso di inserimento avvenuto, false altrimenti (se
esiste gia una persona con lo stesso nome).

Sposa() Nome ,Nome bool

Marca come sposate le due persone presenti nella struttura ed aven-
ti nomi specificati dai parametri di ingresso. Restituisce l’esito
dell’operazione. L’operazione fallisce nei casi seguenti:

e uno o entrambi i nomi non sono presenti nella lista;
e le persone specificate sono dello stesso sesso;

e una o entrambe le persone risultano gia sposate.

Coniugato () Nome bool, bool
Restituisce due valori booleani. Il primo indica se il nome specificato
é presente o meno nella lista. Se tale valore € vero, il secondo valore
restituito & pari a vero se la persona dal nome specificato ¢ coniugata,
falso altrimenti.

NumeroSposi () 0] unsigned int
Restituisce il numero delle persone coniugate nella struttura.

NumeroCoppie () 0] unsigned int
Restituisce il numero di coppie di sposi presenti nella struttura.

EX. Altri esercizi 45

Svuota() o ¢

Svuota la struttura.

Stampa () ¢ ¢
Stampa il contenuto della struttura (vedi esempio ?77).

L’unico metodo della classe AgenziaMatrimoniale che puo utilizzare lo
standard-output (cout) ¢ il metodo Stampa(). Gli altri metodi (pubblici,
privati o protetti) non possono fare uso degli oggetti per I'I/O.

Si realizzi una funzione main () che permetta di effettuare il collaudo della
struttura dati realizzata.

EX.9 Parco Pattini

Soluzione a pag. 136
La ditta Sax gestisce una pista di pattinaggio e dispone di un parco pattini.
I pattini, tutti dello stesso modello, vengono fittati ai clienti a tempo, in
base alla taglia della calzatura richiesta. Si implementi in linguaggio C++
la classe ParcoPattini utile ad una prima automatizzazione nella gestione
della pista. Data la definizione del tipo Taglia:

typedef unsigned int Taglia;

si implementi la struttura conformemente all’interfaccia specificata di
seguito.

Nome Param. Ingr. Param. Usc.
ParcoPattini() [0} 10}

Costruttore senza parametri. Inizializza una struttura che contiene
un parco pattini vuoto.

“ParcoPattini() ¢ ¢
Distruttore.
AggiungiPattini() Taglia 0]

Aggiunge al parco un paio di pattini della misura specificata.

Svuota()))

Svuota il parco pattini.

NumeroTotPattini ()) unsigned int
Restituisce il numero di paia di pattini che costituiscono l’intero
parco.

EX. Altri esercizi 46

Fitta() Taglia bool

Marca come “fittati” un paio di pattini della taglia specificata dal
parametro di ingresso. Il metodo restituisce true se esiste almeno un
paio di pattini della taglia specificata, false altrimenti.

Disponibilita() Taglia unsigned int
Restituisce il numero di paia di pattini disponibili per la taglia
specificata.

NumeroPattini () Taglia unsigned int
Restituisce il numero di paia di pattini appartenenti al parco, di data
taglia (indipendentemente dal loro stato).

Restituzione() Taglia bool

Marca nuovamente come “disponibile” un paio di pattini della taglia
specificata. Il metodo restituisce true se effettivamente esisteva un
paio di pattini della taglia specificata marcati come “fittati”, false
altrimenti.

Stampa () ¢ ¢
Stampa a video lo stato dell’intero parco pattini.

EX.10 Timer

Soluzione a pag. 142
Si realizzi la classe Timer che svolga le funzioni di cronometro. Tale og-
getto deve poter gestire i messaggi START, STOP, RESET ¢ GETTIME
comportandosi come specificato dall’interfaccia seguente.

Nome Param. Ingr. Param. Usc.
Start () ¢ ¢

Avvia il conteggio del tempo.

Stop() ¢ ¢

Arresta il conteggio del tempo.

Reset () 10} 10}

Arresta ed azzera il timer.

GetTime () 10} Time
Restituisce il conteggio corrente del tempo.

EX. Altri esercizi 47

INATTIVO ATTIVO INATTIVO

10

5
bt

15 0 <«— Valori conteggio

: Y

i i t i i >
10 15 20 25 30 35 40

FoF Y F %oy

GETTIME START GETTIME GETTIME STOP GETTIME RESET GETTIME

© = —» IL TIMER VIENE CREATO

> 54 —»O

Figura EX.1: Un esempio d’uso del timer nel tempo

Nella figura ¢ riportato un esempio grafico del funzionamento dell’oggetto.

Suggerimenti

e La seguente riga di codice:

time t = time (0);

istanzia una variabile t di tipo time e la pone uguale al tempo di
sistema, restituito dalla funzione time (), sotto la forma di un intero
che rappresenta il numero di secondi trascorsi dalla mezzanotte del 1
gennaio 1970. La funzione time() é presente nella libreria C time.h.

e Il funzionamento del timer nei casi non espressamente previsti dalle
specifiche sia arbitrario.

EX.11 Timer Avanzato

Soluzione a pag. 143
Con riferimento alla classe Timer dell’esercizio EX.10, si considerino le se-
guenti ulteriori specifiche:

e quando il timer riceve il messaggio START, il conteggio non deve
ripartire sempre da 0, ma dal valore correntemente memorizzato;

e la ricezione di un messaggio START a timer attivo deve essere inin-
fluente;

e laricezione di un messaggio STOP a timer fermo deve essere ininfluente.

EX. Altri esercizi 48

Modificare, se necessario, I'implementazione del timer per rendere la clas-
se conforme a queste ulteriori specifiche.

EX.12 Votazioni

Soluzione a pag. 145
Si supponga di voler gestire un exit-poll elettorale. Ad ogni intervistato
all’uscita dal seggio si chiede il partito per cui ha votato. In ogni momento
bisogna poi essere in grado di dire quanti voti ha ottenuto ciascun partito
e qual € la distribuzione dei voti tra i partiti. Mediante 1'uso del costrutto
class del linguaggio C+-+, si realizzi una struttura dati adatta all’'uopo.
Si supponga, per semplicita, che ogni partito é identificato con un codice
intero, e si ignorino i voti bianchi e nulli. Di seguito é riportata la specifica
dei metodi pubblici da implementare per la classe Votazioni.

Nome Param. Ingr. Param. Usc.
Votazioni () ¢ ¢
Costruttore.

“Votazioni() ¢ ¢

Distruttore.

AggiungiVoto() unsigned int unsigned int

Aggiunge un voto al partito avente il codice specificato dal parame-
tro di ingresso. Restituisce il numero di voti accumulati fino a quel
momento dal partito.

Svuota()))

Svuota la struttura.

GetVotiPartito() unsigned int unsigned int
Restituisce il numero di voti ottenuto dal partito avente il codice
specificato dal parametro di ingresso.

GetNumeroVoti () 0] unsigned int
Restituisce il numero totale di voti.

GetSituazione () 0] 10}
Stampa a video un riepilogo dei voti complessivamente registrati nella
struttura.

EX. Altri esercizi 49

L’unico metodo della classe Votazioni che puo utilizzare lo standard-
output (cout) ¢ il metodo GetSituazione(). Gli altri metodi (pubblici,
privati o protetti) non possono fare uso delle funzionalita di stampa.

Si realizzi una funzione main () che permetta di effettuare il collaudo della
struttura dati realizzata.

Parte 11

Soluzioni

50

1

© 00 N D U WN

Capitolo SL

Soluzioni degli esercizi su liste

SL.1 Lista Semplicemente Collegata

Traccia a pag. 12
Di seguito si riporta il file Lista.h contenente la dichiarazione della clas-
se Lista, oltre che le definizioni dei tipi Record e TElem funzionali all’'uso
della classe. La dichiarazione del tipo Record, che rappresenta la generica
cella della lista, rispetta il principio dell’information hiding; tale tipo infat-
ti é esclusivamente dichiarato, e sara definito solo successivamente nel file
Lista.cpp. La sua struttura interna risulta pertanto inaccessibile agli utenti
della classe.

|File Lista.h

#ifndef _LISTA H_
#define LISTA H

struct Record; //forward declaration: utile a dichiarare il tipo PRec
typedef Records* PRec;
typedef int TElem;

class Lista {
private:
PRec first ;
int count;

Lista& operator=(const Lista&); //non implementato: inibisce | ’assegnaz.
public:

Lista (); //costruttore senza parametrsi

Lista(const Lista& l); //costruttore di copia

“Lista(); //distruttore

void Inserisci(const TElem& el); //Inserimento in testa

int NumeroElementi() const; //Restituisce il num. degli elementi nella lista
void Svuota(); //Svuota la lista

51

22
23
24
25
26
27

SL. Soluzioni degli esercizi su liste 02

void Elimina(const TElem& el); //Elimina un elemento se presente
void Stampa() const; //Stampa su st. out. tutti gli elementi
bool Ricerca (const TElem& el) const; //Indica la presenza di un elemento

s
#endif /x LISTA H =/

Le prime due righe del file appena mostrato, insieme con 'ultima, impe-
discono che il file Lista.h possa essere processato dal pre-compilatore piu
di una volta all’atto della compilazione di un file sorgente. Cio accade nel-
I’eventualita che, nel grafo delle inclusioni che va a formarsi all’atto della
compilazione di un file .cpp, il file Lista.h risulti incluso da piu di un file.
Dal momento che I'header file Lista.h contiene esclusivamente dichiarazioni
(e non definizioni), una sua eventuale inclusione multipla sarebbe ininfluente
ai fini della compilazione.

Si noti inoltre come 'operatore di assegnazione della lista riportato alla
riga 13 sia dichiarato tra i metodi privati della classe, nonostante non verra
successivamente definito nel relativo file .cpp. Tale dichiarazione é esclusi-
vamente finalizzata ad impedire che tale metodo possa essere invocato dagli
utenti della classe Lista. Se cid accadesse, infatti, verrebbe invocata 1'im-
plementazione dell’operatore di assegnazione automaticamente sintetizzata
dal compilatore e consistente in una copia bit a bit dei membri della classe,
verosimilmente scorretta ai fini di un utilizzo reale della struttura (vedi |5]).

File Lista.cpp

#include <iostream >
#include "lista .h"

using namespace std ;

struct Record {
TElem el;
PRec succ;

s

Lista:: Lista(): first (0), count(0) {

}

Lista:: Lista(const Lista& 1): first (0), count(l.count) {
//Se provo a copiare su me stesso, o se la lista
//l ¢ vuota non esegue alcuna operazione .
if ((this != &l1) && 1.first) {
first = new Record;
first —el = 1. first —el;

PRec 1lp = 1. first ;

PRec p = first;

while (lp—>succ) {
p—>succ = new Record;

p = p—>succ;

SL. Soluzioni degli esercizi su liste 23

Ip = Ip—>succ;

p—el = Ilp—el;
}
p—>succ = 0; //imposta a 0 il succ dell ’ultimo elemento della lista
}
}

Lista::” Lista() {

//Il distruttore ha il compito di svuotare la lista deallocando le strutture

//precedentemente allocate con new nel metodo Inserisci(). In caso contrario

//si incorrerebbe in una perdita della relativa memoria (memory—leak).
Svuota(); //E’ sufficiente invocare il metodo Svuota().

void Lista::Inserisci(const TElem& el) { //Inserimento in testa.
PRec p = new Record;
p—el = el;
p—>succ = first;
first = p;

count-+-+;

}

int Lista:: NumeroElementi() const {
return count;
}

void Lista::Svuota() {
PRec tbd; //tbd = to be deleted
while (first) {

tbhd = first ;
first = first —succ;
delete tbd;

}

count = 0;

}

void Lista :: Elimina(const TElem& el) {
//Questo metodo elimina solo la eventuale prima occorrenza
//dell elemento specificato.

if (first) { // la lista non ¢ wuota

if (first—el =— el) { //l’elemento da eliminare ¢é in testa
PRec tbd = first;
first = first —>succ;
delete tbd;
count ——;

else { //l’elemento da eliminare non ¢ in testa
PRec p = first;
bool trovato = false;
while ((p—>succ) && (!trovato)) {
//1elemento successivo a quello puntato da p deve essere eliminato
if (p—>succ—>el — el) {
PRec tbd = p—>succ;
p—>succ = tbd—>succ; //scollega [’elemento tbd...
delete tbd; //...e lo elimina

trovato = true;
count ——;
} else

SL. Soluzioni degli esercizi su liste

54

p = p—>succ;
}
}
}
}

void Lista::Stampa() const {
PRec p = first;

while (p) {
cout << p—>el << "_";
p — p—>succ;

}

bool Lista:: Ricerca (const TElem& el) const {
PRec p = first;
bool trovato = false;

while ((p) && (!trovato)) {

if (p—el = el)
trovato = true;
else

p = p—>succ;

}

return trovato;

File main.cpp

#include <iostream>
#include <stdlib .h>

#include "lista .h"
using namespace std ;

//Prototipi di funzioni di supporto per la verifica del
//corretto funzionamento dei metodi della classe Lista.
void stampaMenu ();

void Inserisci(Lista& 1);

void Ricerca (Lista& 1);

void Elimina(Lista& 1);

void Svuota(Lista& 1);

void NumeroElementi(Lista& 1);

void Stampa(Lista& 1);

void CopiaLista(Lista& 1);

int main()

{

char c;
Lista lista;

do {
stampaMenu () ;
cin >> c;

switch (c¢) {
case '17:

SL. Soluzioni degli esercizi su liste

%)

case

case

case

case

case

case

case

Inserisci(lista);
break ;

190,

Ricerca(lista);
break ;

'3,

Elimina(lista);
break ;

40

Svuota(lista);
break ;

5.

Stampa(lista);
break;

67

NumeroElementi(lista);
break ;

7.

CopiaLista(lista);
break ;

'8 7.

break ;

default:
cout << "Scelta_non_valida.\n";
break ;

} while (¢ != ’8);

return 0;

}

void stampaMenu () {

cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout

}

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

endl;

"l._Inserisci" << endl;
"2._Ricerca" << endl;
"3._Elimina" << endl;
"4._Svuota" << endl
"5._Stampa" << endl
"6._Numero_Elementi" << endl;
"7._Copia" << endl;
"8._Esci" << endl;
endl;

"Scelta:_";

void Inserisci(Lista& 1) {

int i;

)

cout << "Inserisci_intero:_";
cin >>
l.Inserisci(i);

}

i .

’

void Ricerca (Lista& 1) {

int i;

)

cout << "Inserisci_intero:_";
cin >>
if (1.Ricerca(i))

cout << "Trovato.\n";

else

i .

’

cout << "Non_trovato.\n";

SL. Soluzioni degli esercizi su liste 51§)

Figura SL.1: Un puntatore “scorre” la lista puntando ai puntatori contenuti
in essa.

void Elimina(Lista& 1) {
int i;
cout << "Inserisci_intero:_";
cin >> 1i;
l.Elimina(i);
}

void Svuota(Lista& 1) {
cout << "Svuotamento_lista." << endl;
l.Svuota ();

void Stampa(Lista& 1) {
cout << "Stampa:\n";

1 .Stampa();

cout << endl;
}
void NumeroElementi(Lista& 1) {

cout << "Numero_Elementi:_" << 1.NumeroElementi() << endl;
}

void CopiaLista(Lista& 1) {
Lista lcopia(l);

cout << "La_lista_copiata_contiene:_";

lcopia.Stampa();
cout << endl;

}

Implementazione alternativa del metodo Lista::Elimina()

E possibile realizzare un’implementazione alternativa del metodo Elimina(),
ancora piu sintetica di quella appena mostrata. Tale variante, a differenza
dell’implementazione precedente, non discrimina il caso in cui I'elemento da
eliminare sia posizionato in testa alla struttura, ma tratta i due casi in ma-
niera omogenea. Per ottenere questo, é sufficiente utilizzare un puntatore a
PRec (puntatore a puntatore — vedi Figura SL.1).

Inizialmente il puntatore pp definito del tipo PRec* punta alla locazione
first, membro privato della lista (linea continua). Nella (eventuale) seconda
iterazione, esso passa a puntare alla locazione succ dell’elemento di testa

SL. Soluzioni degli esercizi su liste 57

(linea tratteggiata). In tale passaggio la compatibilita di tipo é rispettata,
essendo sia first che il campo succ del tipo Record dichiarati di tipo PRec.

void Lista:: Elimina(const TElem& el) {
if (first) { //la lista non ¢é wvuota
PRec*x pp = &first; //indirizzo della variabile first
bool trovato = false;
while ((*pp) && (!trovato)) {
if ((xpp)—>el == el) {
PRec tbd = x*pp;
*pp = (*pp)—>succ;
delete tbd;

trovato = true;
count ——;

} else
pp = &((xpp)—>succ);

SL.2 Somma Elementi

Traccia a pag. 13

TElem Lista::Somma() const {
PRec p = first;

TElem somma = 0;

while (p) {
somma = somma + p—>el;
p=p—>succ;

}

return somma;

SL.3 Coda Pari

Traccia a pag. 13
Per valutare se 1’elemento di coda é pari € possibile adottare un approccio
iterativo che, a partire dall’elemento di testa, ricerchi I’'ultimo elemento e ne
restituisca il valore.

PRec Lista::getPuntCoda() const {
//Restituisce il puntatore alla coda della lista
if (first) { //la lista é non—vuota?
PRec p = first;
while (p—>succ)
p = p—>succ;

return p;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

SL. Soluzioni degli esercizi su liste o8

else
return 0; //se la lista ¢ vuota non esiste una coda

}

bool Lista:: CodaPari() const {
PRec p = getPuntCoda(); //restituisce il punt. alla coda, se c’é.
if (p)
return ((p—el % 2) =— 0);
else
return false; //ritorna false per default;

L’esercizio pud essere anche risolto secondo un approccio ricorsivo, cosi
come riportato di seguito.
bool Lista:: CodaPari(const PRec p) const {

if (p) {
if (p—succ)
return _ CodaPari(p—>succ);
else
return ((p—el % 2) = 0);
} else
return 0;

}

bool Lista:: CodaPari() const {
return CodaPari(first);
}

SL.4 Min e Max

Traccia a pag. 13
La ricerca del minimo e del massimo possono essere condotte secondo un ap-
proccio iterativo. Nel listato che segue, si assume inizialmente che il minimo
ed il massimo siano entrambi rappresentati dall’elemento di testa (linee 3 e
4). Successivamente si scandiscono in sequenza gli elementi della lista. Ogni
volta che viene individuato un elemento minore del minimo corrente (linea
8), il minimo corrente viene aggiornato (linea 9). Analogo discorso vale per
il massimo (linee 10 e 11).

void Lista::MinMax(TElem& min, TElem& max) const {
if (first) {
min = first —>el;
max = first —>el;
PRec p = first —>succ;

while (p) {
if (p—el < min)
min = p—>el;
if (p—el > max)
max = p—>el;
p = p—>succ;

}

SL. Soluzioni degli esercizi su liste 29

SL.5 Lista Statica

Traccia a pag. 14

#include <iostream>
using namespace std ;

const int NMAX = 100; //numero maz di elementi della lista
typedef int TElem;

class Lista {
private:
TElem v|NMAX];
int nelem;
public:
Lista();
“Lista ();

void InseriscilnCoda (TElem el);
void Svuota ();

void Stampa() const;

int Count() const;

s

Lista:: Lista (): nelem(0) {

}

Lista::” Lista () {
//Qui non & necessaria alcuna operazione
//Il distruttore poteva anche essere omesso del tutto.

}

void Lista::InseriscilnCoda (TElem el) {
if (nelem < NMAX) {

v[nelem] = el;
nelem+-;
}
}
void Lista::Svuota() {
nelem = 0;

}

void Lista ::Stampa() const {
for (int i = 0; i < nelem; i++)
cout << v[i] << ".";
cout << endl;

}

int Lista::Count () const {
return nelem;
}

void stampa_menu() {
cout << "1:_InseriscilnCoda.\n";
cout << "2:_Svuota.\n";
cout << "3:_Stampa.\n";
cout << "4:_Count.\n";
cout << "5:_Esci.\n";

SL. Soluzioni degli esercizi su liste

60

void InseriscilnCoda (Lista& 1);
void Svuota(Lista& 1);
void Stampa(Lista& 1);
void Count(Lista& 1);

int main()

{

Lista 1;

int scelta;
do {
stampa_menu() ;
cin >> scelta;
switch (scelta) {
case 1:
InserisciInCoda(1);
break ;
case 2:
Svuota(l);
break ;
case 3:
Stampa(l);
break ;
case 4:
Count (1);
break ;
case b:
break ;
default:
cout << "Scelta_non_valida.\n";
break ;

} while (scelta != 5);

return 0;

}

void InseriscilnCoda (Lista& 1) {
TElem el;
cout << "Inserisci_valore_elemento:_";
cin >> el;
l.InseriscilnCoda(el);

}

void Svuota(Lista& 1) {
1.Svuota ();
cout << "Lista_svuotata.\n";

}

void Stampa(Lista& 1) {
cout << "Il_contenuto_della_lista_e’:_";
1 .Stampa();
cout << endl;

}

void Count(Lista& 1) {
cout << "N._Elem:_ " << l.Count() << endl;

}

SL. Soluzioni degli esercizi su liste 61

Figura SL.2: Eliminazione degli elementi con valore 0 dal vettore

SL.6 E Ordinata

Traccia a pag. 14

bool Lista:: EOrdinata () const {
int i = 0;
while (i < nelem — 1) {
if (v[i] > v[i+1])
return false; //esce subito se trovae un’inversione
it++;

return true; //esce senza aver trovato alcuna inversione: lista ordinata

}

SL.7 Elimina Tutti

Traccia a pag. 15
Ipotizzando che l’elemento da eliminare sia 0, il metodo EliminaTutti ()
modifica il vettore degli elementi come mostrato in Figura SL.2.

Per ottenere 'effetto desiderato é sufficiente scandire in sequenza gli ele-
menti del vettore originario (in alto nella figura). Ad ogni passo, se 'ele-
mento puntato € diverso dall’elemento da eliminare, lo si ricopia nel vettore
in basso; in caso contrario non si effettua alcuna operazione e si passa ad
analizzare I’elemento successivo. Alla fine della scansione il vettore in basso
risultera composto dai soli elementi del vettore originario diversi da quello
da eliminare.

E facile convincersi del fatto che, per realizzare ’operazione appena de-
scritta, non sia necessario utilizzare due distinti vettori, ma tutto il procedi-
mento puo essere svolto su un unico vettore. La copia di un elemento diviene
in questo caso uno spostamento nell’ambito dello stesso vettore, senza che la
sovrascrittura della locazione di destinazione rappresenti un problema. Allo
scopo ¢ sufficiente utilizzare due indici i e j:

SL. Soluzioni degli esercizi su liste 62

e i va da 0 a nelem — 1, scandendo in sequenza tutti gli elementi del
vettore originario;

e j avanza ogni qual volta un elemento viene “ricopiato”, e pertanto
rappresenta il riempimento corrente del vettore “ripulito”.

Di seguito si riporta il codice del metodo EliminaTutti().

int Lista:: EliminaTutti(const TElem& el) {

int j = 0;
int count = 0;
for (int i = 0; i < nelem; i++) {
if (v[i] = el) //sono su un elemento da eliminare
count++; //incremento il cont. delle eliminaz. e non ricopio [’elem.
else {
if (i !'=13j) //i e j sono diversi? (é inutile ricopiare se i == j)
vijl = vl|il|; //lo ricopio nel vettore ripulito

j++; //il vettore ripulito ha ora un elemento in piu

}

nelem = nelem — count;
return count;

SL.8 Elimina Ultimi

Traccia a pag. 15
Il metodo LasciaPrimi() richiede di eliminare gli “elementi di coda” della
lista, preservandone i primi n. Bisogna dapprima considerare i seguenti casi
degeneri:

e il numero di elementi da conservare ¢ maggiore del numero di elementi
presenti nella lista: nessun elemento va eliminato (righe 2-3);

e il numero degli elementi da conservare é pari a zero: tutti gli elementi
vanno eliminati (righe 5-9).

Negli altri casi, bisogna dapprima scorrere attraverso le prime n posi-
zioni della lista (righe 11-16); i restanti elementi dovranno essere eliminati,
operando similmente a come accade per il metodo Svuota() (righe 26-30).
L’implementazione risultante é la seguente.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

SL. Soluzioni degli esercizi su liste 63

unsigned int Lista:: LasciaPrimi(unsigned int n) {

if (n >= nelem) //se n >= nelem, nessun elemento va eliminato
return 0;

if (n=—=0) { //se n =0 tutti gli elementi vanno eliminati
unsigned int nel = nelem;
Svuota ()}
return nel;

}

PRec p = first;

//portiamo p a puntare all ’ultimo elemento da tenere nella lista
//bisogna fare n—1 salti
for (unsigned int i = 1; i < n; i++4)

p = p—>succ;
PRec last = p; //facciamo puntare da last |’ elemento che diverrda [’ ultimo
p = p—>succ; //p punta al primo da eliminare
last —>succ = 0; //l ’elemento puntato da last punta ora a zero:

//la porzione della lista che va elimin. & ora scollegata
unsigned int eliminati = nelem — n;

//p pud ora essere immaginato come la testa di una lista da svuotare
while (p) {

PRec tbd = p;

p = p—>succ;

delete tbd;
}

nelem = n;
return eliminati;

}

Il metodo EliminaUltimi() deve eliminare gli ultimi n elementi. Esso
non differisce nella sostanza dal precedente metodo, e puo essere pertanto
implementato nei termini di quest’ultimo.

unsigned int Lista:: EliminaUltimi(unsigned int n) {
if (n >= nelem) { //se n >= nelem la lista va svuotata
unsigned int n = nelem;
Svuota ()}
return n;
} else //altrimenti implement. questo metodo nei termini di LasciaPrimi()
return LasciaPrimi(nelem — n);

SL.9 Somma Coda

Traccia a pag. 15
L’approccio in generale piu efficiente per risolvere questo problema consiste
nel tenere memoria in un membro privato della lista del valore della coda.

SL. Soluzioni degli esercizi su liste 64

Tale valore deve essere costantemente aggiornato, a cura di tutti i meto-
di che possono potenzialmente alterarlo: inserimento, eliminazione, svuota-
mento, ecc. Si noti che lo stesso metodo SommaCoda() finisce per alterare
il valore della coda. Di seguito si mostrano le implementazioni dei meto-
di Inserisci() e SommaCoda(), nelle ipotesi che la lista sia dotata di una
variabile-membro privata definita come segue:

class Lista {
private:

TElem valoreCoda;

};...

void Lista::Inserisci(TElem el) {
//Inserimento in tlesta
PRec p = new Record;
p—el = el;
p—>succ = first;
first = p;
nelem-++;

//Se quello inserito & il primo elemento, bisogna aggiornare
//il wvalore della coda.
if (!first—>succ)

valoreCoda = el;

}

void Lista ::SommaCoda() {
if (first) {
//Se la lista non é wuota, la variabile—membro contiene un val. corretto.
//Lo sommo a tutti gli elementi.
PRec p = first ;
while (p) {
p—el = p—el + valoreCoda;
p = p—>succ;

//In questo punto, il wvalore dell ’elemento di coda é raddoppiato .
//Aggiorno la variabile—membro.
valoreCoda = valoreCoda * 2;

SL.10 Sposta Testa in Coda

Traccia a pag. 16
Per svolgere 'operazione si fa uso di un metodo di supporto getPuntCoda ()
deputato a restituire il puntatore all’elemento di coda della lista, se esistemte.
Si noti che nessun elemento viene creato (new) o distrutto (delete), ma
I'operazione é effettuata esclusivamente mediante ricollocazione di puntatori.

SL. Soluzioni degli esercizi su liste 65

//Metodo privato

PRec Lista::getPuntCoda() const {
//Restituisce il puntatore alla coda della lista
if (first) {
PRec p = first;
while (p—>succ)
p — p—>succ;

return p;

}

else
return 0; //non esiste una coda se la lista & wvuota

}

//Metodo pubblico

bool Lista::SpostaTestalnCoda() {
PRec p = getPuntCoda(); //restituisce il punt. alla coda, se c’é.
it (p) {
p—>succ = first;
first = first —>succ;
p—>succ—>succ = 0;

}

return (p != 0); //se p non é 0, lo spostamento é stato effettuato

}

SL.11 Elimina Pari e Dispari
Traccia a pag. 16

unsigned int Lista:: EliminaElementiPostoDispari () {
int n = 0;
if (first) {
PRec p = first; //p punta al primo elemento (di indice 0, quindi pari)

//Se p punta ad un elemento, e questo elemento ha un successivo ...
while (p && p—>succ) {
PRec tbd = p—>succ; //... il successivo deve essere eliminato.
p—>succ = p—>succ—>succ; //Scollego [’elemento da canc. dalla catena,
delete tbd; //lo distruggo,

//p passa all ’elemento successivo ,
//sempre di indice pari (nella lista originale).
p = p—>succ;
n++;
}
}

return n;

}

unsigned int Lista:: EliminaElementiPostoPari() {

int n = 0;
if (first) { //esci subito se la lista é wuota...
//...altrimenti cancella subito il primo elemento (indice 0)

PRec tbd = first ;

SL. Soluzioni degli esercizi su liste

66

first = first —succ;
delete tbd;
n+-+;

//essendo stata eliminata la testa non resta che

//eliminare tutti gli elementi di posto dispari dell "attuale

n =n + EliminaElementiPostoDispari ();

}

return n;

}

SL.12 Lista Doppiamente Collegata

Traccia a pag. 16

#include <iostream>

using namespace std ;

struct

Record ;

typedef Recordsx PRec;
typedef int TElem;

struct

Record {

TElem el;

PRec
PRec

s

prec;
succ;

class Lista {
private:

PRec
PRec

first ;
last ;

unsigned int nelem;

Lista(const Lista&); //inibisce la copia mediante costruttore
void operator— (const Lista&); //inibisce | ’assegnazione

public:
Lista ();
“Lista ();
void Inserisci(TElem el);
void Svuota ();
void StampaDiretta() const;
void Stampalnversa() const;
void StampaAlternata () const;
unsigned int Count() const;
b
Lista:: Lista(): first (0), last(0), nelem(0) {

}

Lista::” Lista () {
Svuota ();

void Lista::Inserisci(TElem el) {

SL. Soluzioni degli esercizi su liste

67

//Inserimento in coda
PRec p = new Record;
p—el = el;
p—>succ = 0;
p—prec = last;
if (last)

last —>succ = p;
last = p;

if (!first)
first = p;

nelem-++;
}

void Lista::Svuota() {
PRec tbd; //to be deleted
while (first != 0) {
thd = first;
first = first —>succ;
delete tbd;
}
nelem = 0;
last = 0;

}

void Lista::StampaDiretta() const {
PRec p = first;
while (p != 0) {
cout << p—>el << "_";
p = p—>succ;
}
}

void Lista::Stampalnversa() const {
PRec p = last;
while (p !'= 0) {
cout << p—>el << "_";
p = p—>prec;
}
}

void Lista::StampaAlternata () const {
PRec p = first;
PRec q = last;
bool done = false;

while ((p) && !done) {
cout << p—>el << "_";
if (q != p)
cout << gq—el << "_";

//se p e q sono sovrapposti oppure sono
//abbiamo terminato

if ((p = a) || (p—>succ = q))
done = true;

p = p—>succ;
q = g—>prec;

consecutivi

SL. Soluzioni degli esercizi su liste

unsigned int Lista::Count() const {
return nelem;
}

void stampa menu() {
cout << "1l:_Inserisci.\n";
cout << "2:_Svuota.\n";
cout << "3:_Stampa_Diretta.\n";
cout << "4:_Stampa_lInversa.\n";
cout << "5:_Stampa_Alternata.\n";
cout << "6:_Count.\n";
cout << "T7:_Esci.\n";

}

void Inserisci(Lista& 1);

void Svuota(Lista& 1);

void StampaDiretta(Lista& 1);
void Stampalnversa(Lista& 1);
void StampaAlternata (Lista& 1);
void Count(Lista& 1);

int main()

{

Lista 1;

int scelta;
do {
stampa_menu () ;
cin >> scelta;
switch (scelta) {
case 1:
Inserisci(l);
break ;
case 2:
Svuota(l);
break ;
case 3:
StampaDiretta(l);
break ;
case 4:
Stampalnversa(l);
break ;
case 5:
StampaAlternata (1);
break ;
case 6:
Count (1);
break ;
case T:
break;
default :
cout << "Scelta_non_valida.\n";
break ;

} while (scelta != 7);

return 0;

}

void Inserisci(Lista& 1) {
TElem el;
cout << "Inserisci_valore_elemento:_";

SL. Soluzioni degli esercizi su liste 69

cin >> el;
l.Inserisci(el);

}

void Svuota(Lista& 1) {
l.Svuota ();
cout << "Lista_svuotata.\n";

}

void StampaDiretta(Lista& 1) {
cout << "Stampa_Diretta:_";
l.StampaDiretta();
cout << endl;

}

void Stampalnversa(Lista& 1) {
cout << "Stampa_Inversa:_";
l.Stampalnversa();
cout << endl;

}

void StampaAlternata (Lista& 1) {
cout << "Stampa_Alternata:_";
l.StampaAlternata ();
cout << endl;

void Count(Lista& 1) {
cout << "Il_numero_di_elementi_contenuti_nella_lista_e
<< 1.Count () << endl;

r.oon

SL.13 Ruibalta

Traccia a pag. 18
L’approccio in generale pitu efficiente per ribaltare la lista consiste nel modi-
ficare la configurazione di tutti i puntatori contenuti nella struttura, senza
pertanto effettuare spostamenti fisici di elementi. Di seguito si forniscono
due soluzioni, la prima basata su un metodo iterativo, la seconda su uno
ricorsivo.

Approccio iterativo

Si consideri la Figura SL.3(a), in cui é riportata la lista di partenza. Per
ottenerne il ribaltamento ¢ sufficiente che il campo succ del primo elemento
(che punta ad ely) passi a puntare a 0, che il campo succ del secondo elemento
(che punta ad el3) passi a puntare al primo, che il campo succ del terzo
elemento (che punta ad ely) passi a puntare al secondo... e cosi via. Infine,
il puntatore first (che punta ad el;) dovra puntare all’elemento el,,. Questo
procedimento pud essere svolto servendosi di due puntatori che iniziano a
scorrere la lista nell’unica direzione concessa, puntando di volta in volta a

SL. Soluzioni degli esercizi su liste 70

s [}, [} [o- ——fa, T

(a) Lista originale

Ldiafe] Lo [eg—tel, e

pl p2
(b) Prima dell’i-esima iterazione

EFR T W

pl p2 temp

(¢) Dopo l'i-esima iterazione

(d) Lista ribaltata

Figura SL.3: Il processo logico di ribaltamento di una lista

SL. Soluzioni degli esercizi su liste 71

due elementi consecutivi e spostandosi in avanti di un elemento alla volta.
Ad ogni passo dell’iterazione lo scambio puo essere effettuato servendosi di
un terzo puntatore temporaneo (vedi Figure SL.3(b) e SL.3(c)). Lo stato
finale della lista al termine dell’iterazione ¢ riportato in Figura SL.3(d).

//Versione iterativa del metodo Ribalta ()

//Metodo Pubblico
void Lista:: Ribalta() {
if (first && first —>succ) { //se la lista contiene almeno 2 elementi
PRec pl = first; //memorizzo in pl il primo
PRec p2 = pl—>succ; //memorizzo in p2 il secondo
pl—>succ = 0; //pl, diventando [’ ultimo elemento, deve puntare a zero

while (p2—>succ) { //se p2 non & |’ ultimo elemento
PRec temp = p2—>succ; //memorizzo in temp il successivo di p2
p2—>succ = pl; //il successivo di p2 ¢é ora pl

pl = p2; //pl diventa p2;
p2 = temp; //p2 diventa temp

}

//in questo punto del codice pl e p2 puntano agli ultimi
//due elementi della lista .

p2—>succ = pl; //il successivo di p2 é ora pl

first = p2; //p2 ora ¢é la nuova testa

Approccio ricorsivo

Il ribaltamento della lista puo essere approcciato come un problema ricorsivo.
Infatti, avendo una lista, la sua versione ribaltata si ottiene isolando il primo
elemento, ribaltando la restante parte della lista, e posponendo a questa
I’elemento isolato. Il problema del ribaltamento di una lista si riconduce
dunque al ribaltamento di una seconda lista costituita da un elemento in
meno. Di questo passo ci si trovera a ribaltare una lista costituita da un unico
elemento, la cui versione ribaltata é uguale a sé stessa. Durante il processo
di ribaltamento bisogna anche prestare attenzione a redirigere correttamente
la testa della (sotto)lista di volta in volta considerata. A questo proposito, il
metodo ricorsivo _Ribalta() riceve in ingresso il puntatore alla testa della
lista da ribaltare e restituisce la testa della lista ribaltata.

//Versione ricorsiva del metodo Ribalta ()

//Metodo privato
PRec Lista:: ribalta(PRec p) {
if ((!'p) || (!p—>succ)) //se la lista ¢é formata da 0 o 1 elementi
//mon faccio niente
return p;
else {

SL. Soluzioni degli esercizi su liste

72

//memorizzo in vecchia testa la wvecchia testa

PRec vecchia_ testa = p;
//memorizzo in wvecchio secondo il wvecchio secondo elemento
PRec vecchio secondo = p—>succ;

//ribalto la sottolista con testa in vecchio secondo ...
//...e memorizzo in nuova testa la nuova testa.
PRec nuova_testa = _ribalta(vecchio secondo);

//la wvecchia testa diviene | ’ultimo elemento (e quindi punta a 0)

vecchia testa—>succ = 0;
//il wvecchio secondo elemento punta alla vecchia testa
vecchio secondo—>succ = vecchia testa;

return nuova_testa; //restituisco la nuova testa

}
}

//Metodo pubblico

void Lista:: Ribalta() {
first = _ribalta(first);

}

Capitolo SA

Soluzioni degli esercizi su alberi
binari

SA.1 Albero Binario

Traccia a pag. 19

‘ File AlberoBinario.h

#ifndef ALBEROBINARIO H
#define _ALBEROBINARIO H_

struct Nodo; //Forward declaration
typedef Nodox PNodo;
typedef int TElem; //L’albero contiene inters

class AlberoBinario {
private:
PNodo root; //radice dell "albero

// Metodi ricorsivi di supporto

void CopiaAlbero (PNodo& dest , const PNodo& source);
void _Svuota(const PNodo& n);

void AggiungiElem (PNodo& n, const TElem& el);

void _ Sostituisce (PNodo& n, PNodo& p);

bool InAlb(const PNodo& n, const TElem& el) const;
void Elimina(PNodo& n, const TElem& el);

void _PreOrdine(const PNodo& n) const;

void PostOrdine (const PNodo& n) const;

void InOrdine(const PNodo& n) const;

//operatore di assegnazione privato: inibisce [’ ’assegnazione
//che provocherebbe una copia superficiale
AlberoBinario& operator=(const AlberoBinario &);
public:
AlberoBinario (); //costruttore senza parametri

73

SA. Soluzioni degli esercizi su alberi binari 74

AlberoBinario (const AlberoBinario& a); //costruttore di copia
“AlberoBinario (); //Distruttore

void AggiungiElem(const TElem& el);
bool InAlb(const TElem& el) const;
void Elimina(const TElem& el);
void Svuota ();

void PreOrdine () const;

void PostOrdine() const;

void InOrdine () const;

s

#endif /+ _ALBEROBINARIO H x/

File AlberoBinario.cpp

#include <iostream >
#include "AlberoBinario .h"

using namespace std ;

struct Nodo { //Struttura Nodo
TElem el;
PNodo sin;
PNodo des;

s

AlberoBinario :: AlberoBinario (): root (0) {

}

AlberoBinario :: AlberoBinario (const AlberoBinario& a) {
if (this != &a) //copia solo da un oggetto differente
_ CopiaAlbero(root , a.root);

}

AlberoBinario :: 7 AlberoBinario () {
Svuota ();

// Metodi privati ricorsivi di supporto

void AlberoBinario :: CopiaAlbero(PNodo& dest, const PNodo& source) {
// Questo metodo ricorsivo accetta in ingresso un puntatore ad un albero
// sorgente (source) e restituisce in uscita un puntatore ad un albero che
// viene costruito ricopiando il primo.
if (source) { //se la sorgente non & |’ albero wvuoto
dest = new Nodo; //crea un nuovo nodo
dest—>el = source—>el; //assegna il contenuto dalla sorgente alla destinaz.

//Ora bisogna ricreare il sottoalbero sinistro ed il sottoalbero destro
//del nodo puntato da dest ricopiando i rispett. sottoalberi puntati da
//source. Riflettendo, | ’operazione desiderata é del tutto analoga a quella
//gid invocata a partire dalla radice. E’ quindi possibile sfruttare la
//ricorsione ed invocare lo stesso "servizio" _ CopiaAlbero () consid.
//source—>des e source—>sin come radici di due distinti alberi.

_CopiaAlbero(dest—>sin , source—>sin); //assegna il sottoalbero sinistro

~ CopiaAlbero (dest —>des, source—>des); //assegna il sottoalbero destro
} else

dest = 0;

SA. Soluzioni degli esercizi su alberi binari 75

}

void AlberoBinario :: AggiungiElem (PNodo& n, const TElem& el) {

if (!'n) {
n = new Nodo; //si crea un nuovo elemento dell ’albero...
n—el = el; //...e lo si inizializza.
n—>sin = 0;
n—>des = 0;
}
else

if (el > n—el)

_ AggiungiElem (n—>des , el);
else

_ AggiungiElem (n—>sin , el);

}

bool AlberoBinario :: InAlb(const PNodo& n, const TElem& el) const {
if (!n)
return false;

if (n—>el = el) //l’elemento cercato é nella radice?
return true;

if (el > n—>el) //¢é maggiore del contenuto della radice?
return _InAlb(n—>des, el); //cerca nel sottoalbero destro
else
return _InAlb(n—>sin, el); //cerca nel sottoalbero sinistro

}

void AlberoBinario :: Sostituisce(PNodo& n, PNodo& p) {

// Questo metodo ha come parametri di ingresso—uscita :

// —n: un puntatore alla radice di un albero;

// —p: un puntatore ad un nodo.

// Il suo effetto ¢ quello di sostituire il nodo puntato da p con il massimo
// elemento dell ’albero n. La prima volta questo metodo viene invocato

// (nel metodo elimina) con la sintassi _ Sostisuisci(n—>sin, n), percui

// si provvede alla sostituzione del nodo n con il massimo del suo

// sottoalbero sinistro.

PNodo q;

if (!n—>des) {
q = n;
n = n—>sin;

q—>sin=p—>sin;
q—>des=p—>des;
p—q;

} else
_Sostituisce(n—>des, p);

}

void AlberoBinario :: Elimina(PNodo& n, const TElem& el) {
if (n) { // Eliminare da un albero vuoto mnon produce alcuna operazione
if (n—>el == el) {
//cancella nodo corrente
PNodo p = nj;
if (!n—>sin) //il ramo sinistro del nodo da eliminare & vuoto?
n = n—>des; //sostituzione del nodo col suo sottoalbero destro
else
if (!n—>des) //il ramo destro del nodo da eliminare é vuoto?
n = n—>sin; //sostituzione del nodo col suo sottoalbero sinistro
else //il nodo da eliminare ha sia il sottoalbero sz che quello dz?
_ Sostituisce(n—>sin, n); //chiamo il "servizio" Sostituisce()
delete p;

SA. Soluzioni degli esercizi su alberi binari

76

} else
if (el > n—el)
_ Elimina(n—>des, el);
else
_ Elimina(n—>sin, el);
}
}

void AlberoBinario :: Svuota(const PNodo& n) {
if (n) { // Agisce solo se [’albero esiste
_Svuota (n—>sin);
_ Svuota (n—>des);
delete n;
}
}

void AlberoBinario :: PreOrdine(const PNodo& n) const {
it (n) {
cout << n—>el << "_";
_ PreOrdine(n—>sin);
_PreOrdine(n—>des);
}
}

void AlberoBinario :: PostOrdine(const PNodo& n) const {
if (n) {
_PostOrdine (n—>sin);
_PostOrdine (n—>des);
cout << n—>el << "_";

¥

}

void AlberoBinario :: InOrdine(const PNodo& n) const {
if (n) {

_InOrdine (n—>sin);
cout << n—>el << "_";
_InOrdine (n—>des);

}
}

// Metodi pubblici

void AlberoBinario :: AggiungiElem(const TElem& el) {
_ AggiungiElem (root , el);

bool AlberoBinario ::InAlb(const TElem& el) const {
return _InAlb(root, el);
}

void AlberoBinario :: Elimina(const TElem& el) {
_ Elimina(root , el);
}

void AlberoBinario ::Svuota() {
_Svuota(root);
root = 0;

}

void AlberoBinario :: PreOrdine () const {
_ PreOrdine(root);
}

SA. Soluzioni degli esercizi su alberi binari

77

void AlberoBinario :: PostOrdine() const {
_PostOrdine (root);
}

void AlberoBinario :: InOrdine () const {
_InOrdine(root);
}

File main.cpp

#include <iostream >
#include "AlberoBinario .h"

using namespace std ;

//Prototipi di funzioni di supporto per la wverifica del corretto funzion.
//dei metodi della classe AlberoBinario.

void stampaMenu ();

void Inserisci(AlberoBinario& a);

void Ricerca (AlberoBinario& a);
void Elimina(AlberoBinario& a);
void Svuota(AlberoBinario& a);
void PreOrdine (AlberoBinario& a);
void InOrdine(AlberoBinario& a);
void PostOrdine(AlberoBinario& a);
void Copia(AlberoBinario& a);

int main() {
char c;
AlberoBinario albero;

do {
stampaMenu () ;
cin >> c¢;

switch (c) {

case '1’:
Inserisci(albero);
break ;

case ’27:
Ricerca (albero);
break ;

case ’37:
Elimina(albero);
break ;

case ’4’:
Svuota(albero);
break;

case ’5’:
PreOrdine (albero);
break ;

case ’6’:
InOrdine (albero);
break ;

case '7’:
PostOrdine(albero);
break ;

case ’8':
Copia(albero);

SA. Soluzioni degli esercizi su alberi binari

78

break ;
case ’9’:
break ;
default:
cout << "Scelta_non_valida.\n";
break ;

} while (¢ != ’97);

return 0;

}

void stampaMenu () {
cout << endl;
cout << "1._Inserisci" << endl;
cout << "2._Ricerca" << endl;
cout << "3._Elimina" << endl;
cout << "4._Svuota" << endl;
cout << "5._Pre—ordine" << endl;
cout << "6._InOrdine" << endl;
cout << "7._Post—Ordine" << endl;
cout << "8._Copia_albero" << endl;
cout << "9._Esci" << endl;
cout << endl;
cout << "Scelta:_";

}

void Inserisci(AlberoBinario& a) {
int i;
cout << "Inserisci_intero:_";
cin >> 1i;
a.AggiungiElem(i);

void Ricerca (AlberoBinario& a) {
int i;
cout << "Inserisci_intero:_";
cin >> 1i;
if (a.InAlb(i))
cout << "Trovato.\n";
else
cout << "Non_trovato.\n";

}
void Elimina(AlberoBinario& a) {
int i;
cout << "Inserisci_intero:_";
cin >> ij;
a.Elimina(i);
}
void Svuota(AlberoBinario& a) {
cout << "Svuotamento_albero." << endl;

a.Svuota ();

void PreOrdine (AlberoBinario& a) {
cout << "Stampa_in_pre—ordine:\n";
a.PreOrdine ();
cout << endl;

}

SA. Soluzioni degli esercizi su alberi binari 79

void InOrdine(AlberoBinario& a) {
cout << "Stampa_in_ordine:\n";
a.InOrdine ();
cout << endl;

}

void PostOrdine(AlberoBinario& a) {
cout << "Stampa_in_post—ordine:\n";
a.PostOrdine ();
cout << endl;

}

void Copia(AlberoBinario& a) {
AlberoBinario b(a);
cout << "La_visita_in_ordine_dell ’albero_copiato_e ’:_";
b.InOrdine ();
cout << endl;

//al termine di questa funzione, [’istanza di AlberoBinario b wviene
//distrutta e rimossa dallo stack.

}
SA.2 Numero Elementi

Traccia a pag. 20
La tecnica piu semplice per effettuare il conteggio del numero di elementi
contenuti in un albero, consiste nel definire un membro privato di tipo intero
non negativo atto a memorizzare tale valore. Il valore del membro viene
alterato da tutti i metodi della struttura che modificano il numero di nodi
presenti in essa (inserimento, eliminazione, svuotamento, ecc.).
QQui si mostrera un approccio differente, di solito meno efficiente, consi-
stente in un metodo ricorsivo che calcola il numero di elementi mediante una
visita completa dell’albero.

//Metodo privato
unsigned int AlberoBinario :: NumFElem(const PNodo& n) const {
if (n)
return 1 + NumElem(n—>sin) + _NumElem(n—>des);
else
return O0;
}

// Metodo pubblico
unsigned int AlberoBinario ::NumElem() const {
return _NumElem(root);

}

SA.3 Occorrenze

Traccia a pag. 20

SA. Soluzioni degli esercizi su alberi binari 80

//Metodo privato

unsigned int AlberoBinario :: Occorrenze (const PNodo& n,
const TElem& el) const {

if (!'n) //Se l’albero con radice in n & vuoto...

return 0; //... il numero di occorrenze & pari a zero.
int occ = 0;
if (n—>el = el)

occ++;

if (el > n—el) //il segno > deve essere coerente con la convenzione
//stabilita per [’inserimento degli elementi nell "albero

occ = occ + _ Occorrenze (n—>des, el);
else
occ = occ + _ Occorrenze (n—>sin, el);

return occ;

}
//Metodo pubblico

unsigned int AlberoBinario :: Occorrenze (const TElem& el) const {
return _ Occorrenze(root , el);

}

SA.4 QOccorrenza Massima

Traccia a pag. 21
L’interfaccia della classe AlberoBinario da realizzare ¢ mostrata di seguito,
con enfasi sulle modifiche da applicare alla versione della classe presentata
in §EA.1.

class AlberoBinario {
private:

const int maxocc;

bool Inserisci(PNodo& n, const TElem& el, int curr_ occ);
public:
AlberoBinario (unsigned int max_ occ);

bool Inserisci(const TElem& el);
s
Particolare attenzione merita la funzione Inserisci(). Tale funzione
ricorsiva si occupa dell’inserimento nell’albero dell’elemento specificato dal
parametro di ingresso, nel rispetto del vincolo delle occorrenze massime. Essa

SA. Soluzioni degli esercizi su alberi binari 81

si basa sulla proprieta secondo la quale, durante I'inserimento di un elemento
in un albero binario ordinato, bisogna necessariamente attraversare tutti gli
eventuali altri nodi contenenti lo stesso valore da inserire. E possibile dun-
que discendere attraverso 1’albero in cerca della posizione in cui aggiungere
I’elemento e, contemporaneamente, tenere il conteggio dell’occorrenza delle
eventuali repliche, interrompendo prematuramente l'inserimento in caso di
raggiungimento del numero massimo di occorrenze.
L’implementazione dei metodi dichiarati ¢ riportata di seguito.

AlberoBinario :: AlberoBinario (unsigned int max occ): root(0),
maxocc(max_occ) {

}
//Metodo privato ricorsivo di supporto
bool AlberoBinario :: Inserisci(PNodo& n, const TElem& el, int curr occ) {
if (!n) { //se l’albero é wuoto inserisco certamente
n = new Nodo;
n—>el = el;
n—>sin = 0;
n—>des = 0;
return true;
}
else {
if (el = n—>el) { //se [’elemento corrente ¢ pari ad el...
curr _occ++; //...incremento curr_occ...
if (curr_ occ >= maxocc) //...e se ha raggiunto il limite...
return false; //...esco con il valore false.
}
//Se sono qui il limite non & stato raggiunto.
if (el > n—>el)
return _Inserisci(n—>des, el, curr occ);
else
return Inserisci(n—>sin, el, curr occ);
}
}

// Metodo pubblico Inserisci()
bool AlberoBinario :: Inserisci(const TElem& el) {
if (maxocc > 0)
return Inserisci(root, el, 0);
else
return false;

SA.5 Profondita Limitata

Traccia a pag. 21
L’interfaccia della classe AlberoBinario da realizzare ¢ mostrata di seguito,
con enfasi sulle modifiche da applicare alla versione della classe presentata
in §EA.1.

class AlberoBinario {

SA. Soluzioni degli esercizi su alberi binari 82

private:
c'(')'nst unsigned int maxDepth;

pu‘b.l'ic :
AlberoBinario (unsigned int _maxDepth);
l');)'ol Inserisci(const TElem& el);

5 o

bool AlberoBinario :: Inserisci(PNodo& n, const TElem& el
unsigned int maxDepth) {
if (_maxDepth > 0) {

if (!'n) {
n = new Nodo; //si crea un nuovo elemento dell "albero ...
n—>el =el; //...e lo si inizializza.
n—>sin = 0;

n—>des = 0;

return true;

}
else
if (el > n—>el)
return _Inserisci(n—>des, el, maxDepth — 1);
else
return _Inserisci(n—>sin, el, maxDepth — 1);
}
return false;

}

// Metodi pubblici
AlberoBinario :: AlberoBinario (unsigned int _maxDepth): root (0),

maxDepth(maxDepth) {
}

bool AlberoBinario :: Inserisci (const TElem& el) {
return _Inserisci(root, el, maxDepth);

}

SA.6 Somma

Traccia a pag. 22

//Metodo privato

void AlberoBinario :: Somma(const PNodo& n, int i) {
if (n&& (i != 0)) {
n—>el 4= 1i;

_Somma(n—>sin , i);
_Somma(n—>des, 1i);
}
}

SA. Soluzioni degli esercizi su alberi binari 83

//Metodo Pubblico

void AlberoBinario ::Somma(int i) {
_Somma(root , 1i);
}

SA.7 Sostituisci

Traccia a pag. 22

//Metodo privato

unsigned int AlberoBinario:: Sostituisci(PNodo& n, TElem i, TElem j) {
unsigned int sostituzioni = 0;

if (n) {
//Sostituisco prima nei sottoalberi...
if (i > n—>el)

sostituzioni = sostituzioni + Sostituisci(n—>des, i, j);
else
sostituzioni = sostituzioni + Sostituisci(n—>sin, i, j);

//...poi nella radice
if (n—>el = i) {
n—>el = j;
sostituzioni—++;
}
}

return sostituzioni;

}
// Metodo pubblico

unsigned int AlberoBinario :: Sostituisci(TElem i, TElem j) {
return _ Sostituisci(root, i, j);

}

SA.8 Conta Min e Max

Traccia a pag. 22
Il conteggio degli elementi compresi entro un certo intervallo puo essere svolto
mediante una visita dell’albero. Data la proprieta di ordinamento dell’albero,
non ¢ peraltro necessario visitare completamente la struttura. Si consideri
per esempio il caso in cui si debbano conteggiare gli elementi compresi nel-
I'intervallo (10,20). In occasione della visita di un ipotetico elemento pari a
5, & inutile procedere verso il sottoalbero sinistro di tale elemento, che non
ha possibilita di fornire un contributo al conteggio in corso.

//Metodo privato
unsigned int AlberoBinario :: ContaMinMax (const PNodo& n, TElem Min,

SA. Soluzioni degli esercizi su alberi binari 84

TElem Max) const {
if (n) {
int count = 0;
//Se | ’elemento puntato da el & compreso tra Min e Maz. ..
if ((n—>el >= Min) && (n—>el <= Max))
count ++; //...incremento count.

//Se 1 ’elemento puntato da n é minore di Maz. ..

if (n—>el < Max) {
//...allora nel sottoalbero destro potrebbero esserci altri elements.
count = count + _ ContaMinMax (n—>des, Min, Max);

}

if (n—>el >= Min) //E wviceversa per il sottoalbero sinistro.
count count + ContaMinMax (n—>sin , Min, Max);

return count;
} else
return 0; //L’albero ¢é wuoto.
}

//Metodo pubblico
unsigned int AlberoBinario :: ContaMinMax (TElem Min, TElem Max) const {
return ContaMinMax (root , Min, Max);

}

SA.9 Profondita Maggiore di Due

Traccia a pag. 23
Si noti che il metodo riportato di seguito non é ricorsivo, né richiama alcun
altro metodo.

bool AlberoBinario :: ProfMaggioreDiDue() const {
return
//c’e la radice e...
//...0 esiste il nodo di sinistra e questo ha almeno un figlio
//oppure esiste il nodo di destra e questo ha almeno un figlio .
//Tradotto in codice si ha:

root && (
(root—>sin && (root—>sin—>sin || root—>sin—>des)) ||
(root—>des && (root—>des—>sin || root—>des—>des))

);

SA.10 Profondita Maggiore Di

Traccia a pag. 23

//Metodo privato
bool AlberoBinario :: ProfMaggioreDi(const PNodo& n, unsigned int p) const {
if (n) { //se [’albero é non vuoto ...
if (p = 0) //se il contatore é (sceso fino a) zero...

SA. Soluzioni degli esercizi su alberi binari

85

}

return true; //...abbiamo superato la prof. richiesta ...
else //...altrimenti bisogna continuare la discesa nei sottoalberi decrement.
return (_ ProfMaggioreDi(n—>sin, p—1) || ProfMaggioreDi(n—>des, p—1));
else //...altrimenti ¢ falso.

return false;

// Metodo pubblico
bool AlberoBinario :: ProfMaggioreDi(unsigned int p) const {
return _ProfMaggioreDi(root, p);

}

SA.11 Profondita Massima

Traccia a pag. 23

int AlberoBinario :: Profondita(const PNodo& n, const TElem& el ,

}

if

}

bool& foglia) const {

(n) { //se [’ albero é wvuoto esco subito
int p;
//decido se cercarlo a destra o a sinistra e...
if (el > n—>el)

//...uso il servizio che i0o stesso offro: ricorsione.

p = _Profondita(n—>des, el, foglia);
else

p = _Profondita(n—>sin, el, foglia);

if (p !'= —1) //se |’ ho trovato in profondita p al "piano di sotto
return p + 1; //...la profondita dal mio punto di wvista é p + 1.

//se sono qui vuol dire che ancora devo trovarlo

if (n—>el == el) { //se sono proprio io...
//...se non ho figli [’elemento trovato é& anche una foglia ...
foglia = (!n—>sin && !n—>des);
return 1; //...e la profonditd dal mio punto di wvista ¢& 1.

}

//se sono qui non | ’ho trovato

return —1;

int AlberoBinario :: Profondita(const TElem& el , bool& foglia) const {
return _Profondita(root, el, foglia);

}

SA.12 Somma Livello

"

Traccia a pag. 24

//Metodo privato

void AlberoBinario :: SommaLivello(const PNodo& n, unsigned int i) {

p.

SA. Soluzioni degli esercizi su alberi binari 86

if (n) {
n—>el 4= 1i;
~ SommalLivello (n—>sin , i+1);
_SommalLivello(n—>des , i+1);
}
}

//Metodo pubblico

void AlberoBinario :: SommaLivello() {
_SommalLivello (root , 1);

}

SA.13 Eliminazione Foglia

Traccia a pag. 24

//Metodi privati
inline bool AlberoBinario :: EUnaFoglia(const PNodo& n) {
//metodo di supporto che wverifica se il nodo
//puntato da n & o meno una foglia.
return (!n—>sin && !n—>des);

}

bool AlberoBinario :: EliminaFoglia(PNodo& n, const TElem& el) {
if (n) { //se n punta ad un nodo (e non a zero)
//se | ’elemento puntato & el e il nodo é una foglia
if ((n—>el = el) && EUnaFoglia(n)) {
delete n; //elimina [’elemento
n=0; //azzera il puntatore
return true;
} else
if (el > n—el)
//ripeti l’operazione nel sottoalb. destro
return _EliminaFoglia(n—>des, el);
else
//ripeti | ’operazione mnel sottoalb. sinistro
return EliminaFoglia(n—>sin , el);

}

return false;

}

//Metodo pubblico
bool AlberoBinario :: EliminaFoglia(const TElem& el) {
if (_EliminaFoglia(root, el)) {
numelem——;
return true;
} else
return false;

SA.14 Eliminazione Foglie

Traccia a pag. 24

SA. Soluzioni degli esercizi su alberi binari 87

//Metodi privati
inline bool AlberoBinario :: EUnaFoglia(const PNodo& n) {
//metodo di supporto che wverifica se il nodo
//puntato da n & o meno una foglia.
return (!n—>sin && !n—>des);

}
unsigned int AlberoBinario :: EliminaFoglie (PNodo& n) {
if (n) {
if (EUnaFoglia(n)) {
delete n;
n = 0;
return 1;
}
else
return EliminaFoglie (n—>sin) + EliminaFoglie (n—>des);
}
return 0;
}

//Metodo pubblico

unsigned int AlberoBinario :: EliminaFoglie() {
unsigned int n = EliminaFoglie(root);
numelem = numelem — n;
return n;

//La stessa operazione pud essere sintetizzata (a scapito
//della leggibilita) con la seguente riga di codice:
// return (numelem —= _ EliminaFoglie(root));

SA.15 Cerca Foglia

Traccia a pag. 25

//Metodi privati

inline bool AlberoBinario :: EUnaFoglia(const PNodo& n) const {
return (!n—>des && !n—>sin);

}

//Metodi ricorsivi di supporto
bool AlberoBinario :: CercaFoglia(const PNodo& n, TElem el ,
bool& foglia) const {
if (!'n)
return false;

bool trovato;

//Cerco subito pit in basso.
if (el > n—>el)

trovato = _CercaFoglia(n—>des, el, foglia);
else
trovato = CercaFoglia(n—>sin, el, foglia);

if (!trovato) { //Se piu in basso non [’ho trovato...

SA. Soluzioni degli esercizi su alberi binari 88

if (n—>el = el) { //...e sono proprio io...
trovato = true; //...imposto trovato a true...
foglia = EUnaFoglia(n); //...e verifico se é una foglia.
}
}

return trovato;

}

bool AlberoBinario :: CercaNodo(const PNodo& n, TElem el, bool& nodo) const {
if (!n)
return false;

if (n—>el = el) { //Se [’elemento corrente & pari ad el...
nodo = (!EUnaFoglia(n)); //...verifico se ¢é un nodo...
return true; //...ed esco con risultato positivo.
//E’ infatti inutile procedere wverso il basso.

else //Se non [’ho trovato, cerco pit in basso.
if (el > n—el)
return _CercaNodo(n—>des, el , nodo);
else
return _CercaNodo(n—>sin , el , nodo);

}

// Metodi pubblici

bool AlberoBinario :: CercaFoglia (TElem el, bool& foglia) const {
return CercaFoglia(root, el, foglia);

}

bool AlberoBinario :: CercaNodo (TElem el , bool& nodo) const {
return _ CercaNodo(root, el, nodo);
}

SA.16 Operatore di Confronto

Traccia a pag. 25

//Metodo privato
bool AlberoBinario :: uguale(const PNodo& nl, const PNodo& n2) const {
if (nl = n2) //Se i puntatori alle radici coincidono, gli alberi
return true; //sono uguali.
//Abbiamo gestito anche [’eventualita che
//gli alberi siano entrambi vuoti.

if ((!nl || !'n2) & & (nl || n2)) //Se solo una delle due rad. ¢ 0 (XOR)...
return false; //... i due alberi non sono uguali
//(perché 1’altra certamente non ¢é zero)

//Appurato che nessuna delle due radici punta a zero...
if (nl—el != n2—>el) //...se i due elem. puntati da nl e n2 sono diversi...
return false; //...allora i due alberi non sono uguali.

//Dunque, abbiamo due alberi non vuoti e contenenti elementi
//di uguale valore nella radice.

//Bisogna ora controllare se i loro sottoalberi sinistro e
//destro sono wuguali: ricorsione.

return _uguale(nl—>sin, n2—>sin) && uguale(nl—>des, n2—>des);

SA. Soluzioni degli esercizi su alberi binari 89

}

// Metodo pubblico

bool AlberoBinario ::operator==(const AlberoBinario& rhs) const {
// Chiamo il metodo privato uguale() e gli passo la mia radice
// e la radice dell "albero rhs.
return _uguale(root, rhs.root);

}

SA.17 Conta Nodi non Foglia

Traccia a pag. 26

//Metodo privato
unsigned int AlberoBinario :: ContaNodiNonFoglia(const PNodo& n) const {
if (In)
return 0;

unsigned int count = 0;

//eventuale contributo sottoalbero sinistro
if (n—>sin)
count = count + _ContaNodiNonFoglia(n—>sin);

//eventuale contributo sottoalbero destro
if (n—>des)
count = count + ContaNodiNonFoglia(n—>des);

//eventuale contributo del presente nodo
if (n—>sin || n—>des)
count-+-;

return count;

}

//Metodo pubblico
unsigned int AlberoBinario :: ContaNodiNonFoglia() const {
return _ContaNodiNonFoglia(root);

}

SA.18 Conta Nodi

Traccia a pag. 26

//Metodo privato
void AlberoBinario :: ContaNodi(const PNodo& n, unsigned int& zero,
unsigned int& uno, unsigned int& due) const {
if (n) {

_ ContaNodi(n—>sin , zero, uno, due);
_ ContaNodi(n—>des, zero, uno, due);

if (n—>sin && n—>des)
due++;
else

SA. Soluzioni degli esercizi su alberi binari 90

if (!n—>sin && !n—>des)
zZero+-+;
else
uno--+;
}
}

//Metodo pubblico
void AlberoBinario :: ContaNodi(unsigned int& zero, unsigned int& uno,
unsigned int& due) const {

zero = 0;
uno = 0;
due = 0;

_ContaNodi(root , zero, uno, due);

}

SA.19 Conta Nodi Sottoalbero

Traccia a pag. 26
Il problema posto puo essere scomposto in due sottoproblemi:
e individuare la radice del sottoalbero di cui contare i nodi;

e contare i nodi del sottoalbero individuato.

Solo la prima delle due operazioni suddette dipende da quale dei due
metodi viene invocato, a differenza della seconda che resta inalterata. Questa
considerazione suggerisce di aggiungere alla classe AlberoBinario i seguenti
metodi:

class AlberoBinario {
private:

unsigned int _ ContaNodi(const PNodo& n) const;

PNodo _ CercaOccorrenzaMin(const PNodo& n,
const TElem& el) const;

PNodo _ CercaOccorrenzaMax (const PNodo& n,
const TElem& el) const;

public:

unsigned int ContaNodiSottoalb Min (const TElem& el) const;
unsigned int ContaNodiSottoalb Max(const TElem& el) const;

}s

Il metodo _ContaNodi() restituisce il numero di nodi di un sottoalbero
di cui sia fornita la radice. Il metodo _CercaOccorrenzaMin() restituisce
il puntatore al nodo avente valore specificato e posizionato piu in alto (li-
vello minimo) all’interno di un albero di cui si fornisce la radice. Analogo

SA. Soluzioni degli esercizi su alberi binari

91

comportamento ha il metodo _CercaOccorrenzaMax(). I due metodi pub-
blici svolgono le operazioni richieste basandosi sui metodi privati mostrati.
_CercalccorrenzaMin(), ad esempio, invoca il metodo ricorsivo _Cerca-
OccorrenzaMin() perché individui la radice del sottoalbero; su tale radice

invoca poi il metodo _ContaNodi ().

Di seguito si riportano le implementazioni dei cinque metodi dichiarati.

// Metodi privati ricorsivi di supporto
unsigned int AlberoBinario :: ContaNodi(const PNodo& n) const {
if (n)
return 1 + ContaNodi(n—>sin) + _ContaNodi(n—>des);
else
return 0;

}

PNodo AlberoBinario :: CercaOccorrenzaMin (const PNodo& n,
const TElem& el) const {

//Cerca mnell ’albero avente radice in n 1’ elemento il cui valore é pari

//ad el ed il cui livello ¢ minimo. Ne restituisce il puntatore.

if (n) {
if (n—>el = el) //Se sono il nodo con [’elemento cercato ...
return n; //...restituisco il puntatore a me stesso...
else

if (n—>el < el) //...altrimenti cerco "piu giu"
return _ CercaOccorrenzaMin (n—>des, el);

else
return _ CercaOccorrenzaMin (n—>sin, el);
} else
return 0;
}
PNodo AlberoBinario :: CercaOccorrenzaMax(const PNodo& n,

const TElem& el) const {

//Cerca mnell ’albero avente radice in n |’ elemento il cui valore é pari

//ad el ed il cui livello ¢ massimo. Ne restituisce il puntatore.
if (n) {
PNodo result ;
if (n—>el < el) //Cerco prima "piu giua"

result = CercaOccorrenzaMax(n—>des, el);
else
result = CercaOccorrenzaMax(n—>sin, el);

if (result) //Se [l ’ho trovato...

cercato .

return result; //...lo restituisco ...
else
if (n—>el = el) //...altrimenti verifico di non essere [’elem.
return n; //Se sono io, restituisco il puntatore a me stesso...
else
return 0; //...altrimenti restituisco 0.
} else

return O0;

}

// Metodi pubblici

unsigned int AlberoBinario :: ContaNodiSottoalb Min (const TElem& el) const {

PNodo n = CercaOccorrenzaMin (root , el);

if (n) //C’¢ almeno un elemento pari ad el?
return _ContaNodi(n);

else
return 0;

SA. Soluzioni degli esercizi su alberi binari

92

}

unsigned int AlberoBinario :: ContaNodiSottoalb Max(const TElem& el) const {
PNodo n = _CercaOccorrenzaMax(root , el);
if (n) //C’¢ almeno un elemento pari ad el?
return ContaNodi(n);
else
return 0;

Capitolo SP

Soluzioni degli esercizi su pile

SP.1 Push Greater

Traccia a pag. 28

#include <iostream>
#include <stdlib .h>

using namespace std;
typedef int TElem;

struct Record;
typedef Records* PRec;
typedef struct Record {
TElem el;
PRec succ;

s

class Pila {
private:
PRec top;
int nelem;
public:
Pila (unsigned int p = 0);
“Pila ();

void Push(const TElem& e);

bool PushGreater (const TElem& e);
TElem Top() const;

TElem Pop ();

void Svuota ();

unsigned int Count() const;

bool Empty() const;

b
Pila:: Pila(): top(0), nelem(0) {
}
Pila::” Pila () {
Svuota ();

93

SP.

Soluzioni degli esercizi su pile 94

void Pila ::Push(const TElem& e) {
PRec p = new Record;
p—el = e;
p—>succ — top;
top = p;
nelem-++;

}

bool
if

}

Pila :: PushGreater (const TElem& e) {
(Empty() || (e > Top())) {
Push(e);

return true;

else

return false;

TElem Pila::Top() const {

if

(top)
return top—>el;

//questo metodo restit. un valore non specif. nel caso la pila sia vuota

TElem Pila::Pop() {

if

}

(top) {

TElem e = top—>el; //memorizza il valore di testa per restit. alla fine

//memorizza il puntatore alla testa: essa dovra essere cancellata
PRec p = top;

top = top—>succ; //porta la testa al successivo

delete p; //elimina la vecchia testa

nelem ——;
return e;

//questo metodo restit. un valore non specif. nel caso la pila sia vuota

void

Pila :: Svuota () {

while (top) {

}

ne

}

PRec p = top;
top — top—>succ;
delete p;

lem = 0;

unsigned int Pila::Count() const {
return nelem;

}

bool

Pila :: Empty () const {

return (nelem == 0);

}

void
void
void
void
void

stampaMenu () ;
Push(Pila& p);
PushGreater (Pila& p);
Top(Pila& p)
Pop(Pila& p)

)
)

SP. Soluzioni degli esercizi su pile

95

void Svuota(Pila& p
void Count(Pila& p)
void Empty(Pila& p)

?;

’

int main()

{
char c;
Pila pila;

do {
stampaMenu () ;
cin >> c¢;
cin.ignore ();

switch (c¢) {

case '17:
Push(pila);
break ;

case '27:
PushGreater (pila);
break;

case ’3’:
Top(pila);
break;

case '47:
Pop(pila);
break ;

case ’'5’:
Svuota(pila);
break ;

case ’6’:
Count (pila);
break;

case '77:
Empty (pila);
break ;

case ’'87:
break ;

default :

cout << "Scelta_non_valida.\n";

break;
} while (¢ != ’8);

return 0;

}

void stampaMenu () {
cout << endl;
cout << "1._Push" << endl;
cout << "2._PushGreater" << endl;
cout << "3._Top" << endl;
cout << "4._Pop" << endl;
cout << "b5._Svuota" << endl;
cout << "6._Count" << endl;
cout << "7._Empty" << endl;
cout << "8._Esci" << endl;
cout << endl;
cout << "Scelta:_";

}

void Push(Pila& p) {

SP. Soluzioni degli esercizi su pile 96

TElem el;

cout << "Inserire_elemento:_";
cin >> el;

p.Push(el);

}

void PushGreater (Pila& p) {
TElem el;
cout << "Inserire_elemento:_";
cin >> el;
if (p.PushGreater (el))
cout << "Elemento_inserito.\n";
else
cout << "Elemento_non_inserito.\n";
}

void Top(Pila& p) {
if (!'p.Empty())
cout << "Elemento_di_testa:_." << p.Top() << endl;
else
cout << "Pila_vuota." << endl;
}

void Pop(Pila& p) {
if (!p.Empty())

cout << "Elemento_di_testa:_." << p.Pop() << endl;
else
cout << "Pila_vuota." << endl;
}
void Svuota(Pila& p) {
p.Svuota ();
cout << "Pila_svuotata.\n";
}

void Count(Pila& p) {
cout << "Numero_elementi:_" << p.Count() << endl;

}

void Empty(Pila& p) {
if (p.Empty())
cout << "True." << endl;
else
cout << "False." << endl;

SP.2 Push If

Traccia a pag. 29
Nella parte privata della classe sono dichiarati i seguenti membri:

class Pila {
private:

const unsigned int _maxpush;
unsigned int _ currpush;

void _Push(const TElem& e);

SP. Soluzioni degli esercizi su pile 97

-

La variabile membro _maxpush tiene memoria di qual ¢ il numero di
inserimenti massimi consecutivi ammessi; il suo valore ¢ inizializzato dal co-
struttore al valore del parametro di ingresso e mai piu variato durante il ciclo
di vita delle istanze della classe. La variabile membro _currpush tiene me-
moria del numero di inserimenti consecutivi correntemente effettuati. Ogni
chiamata al metodo Push() deve verificare che questo parametro non ecce-
da il valore massimo consentito. Il metodo privato _Push() é implementato
come una classica Push().

Di seguito si riporta 'implementazione dei metodi richiesti dalla traccia.

Pila :: Pila (unsigned int maxpush):
top (0), nelem(0), maxpush(maxpush), currpush(0) {

}

void Pila:: Push(const TElem& e) {
//Classica Push () in una pila: metodo privato
PRec p = new Record;
p—el = e;
p—>succ — top;
top = p;
nelem-++;
}

bool Pila :: Push(const TElem& e) {
if (_currpush < maxpush) {
_Push(e); //Inserisce incondizionatamente nella pila
_currpush++;
return true;

}

return false;

}

TElem Pila::Pop() {
if (top) {
//memorizza il valore di testa per restituirlo alla fine
TElem e = top—>el;

//memorizza il puntatore alla testa: essa dovra essere cancellata
PRec p = top;

top = top—>succ; //porta la testa al successivo

delete p; //elimina la vecchia testa

nelem ——;
_currpush = 0; //azzero il conteggio degli inseriments
return e;

}

//questo metodo restituisce un valore non
//specificato mnel caso la pila sia vuota

void Pila:: Svuota() {
while (top) {
PRec p = top;

SP. Soluzioni degli esercizi su pile

98

top — top—>succ;
delete p;
}
nelem = 0;
_currpush = 0; //azzero il conteggio degli
}

inseriments

Capitolo SC

Soluzioni degli esercizi su code

SC.1 Coda

Traccia a pag. 31

#include <iostream>
#include <stdlib .h>

using namespace std;
typedef int TElem;

struct Record;
typedef Records* PRec;
typedef struct Record {
TElem el;
PRec succ;

s

class Coda {

private:
PRec head;
PRec tail;
int nelem;

public:
Coda();
“Coda ();

void Push(const TElem& e);
TElem Top() const;

TElem Pop ();

TElem Somma() const;

void Svuota ();

unsigned int Count() const;
bool Empty() const;

b
Coda::Coda(): head(0), tail(0), nelem(0) {
}
Coda::” Coda() {
Svuota ();

99

SC. Soluzioni degli esercizi su code

100

}

void Coda:: Push(const TElem& e) {

}

//Creo un nuovo elemento mnell "heap
PRec temp = new Record;

temp—>el = e;

temp—>succ = 0;

//se c’é un elemento di coda questo deve puntare al nuovo elemento
if (tail)
tail —>succ = temp;

//in ogni caso la coda punterd al nuovo elemento
tail = temp;

//se la testa non punta ad un elemento, deve puntare al nuovo elemento:

//la coda, cioé, era wvuota al momento dell 'inserimento
if (!head)
head = temp;

nelem-++;

TElem Coda::Top() const {

}

if (head)
return head—>el;

TElem Coda::Pop() {

}

if (head) {
PRec temp = head;
TElem el temp = temp—>el;

//head passa a puntare all ’elemento successivo
head = head—>succ;

//se non punta a niente vuole dire che la coda conteneva un solo elem.

//anche tail quindi deve puntare a 0

if (!'head)
tail = 0;
nelem ——;

delete temp;
return el temp;

}

TElem Coda::Somma() const {

}

TElem sum = 0;
for (PRec temp = head; temp != 0; temp = temp—>succ)
sum = sum + temp—>el;

return sum;

void Coda:: Svuota () {

while (head != 0) {
PRec tbd = head;
head = head—>succ;
delete tbd;

}

SC. Soluzioni degli esercizi su code

101

unsigned int Coda::Count () const {
return nelem;

}

bool Coda::Empty() const {
return (nelem == 0);

}

void stampaMenu ();
void Push(Coda& ¢
void Top(Coda& c)
void Pop(Coda& c)
void Somma(Coda& c);
void Svuota(Coda& c);
void Count (Coda& c);
void Empty(Coda& c);
int main ()
{

char c;

Coda coda;

do {
stampaMenu () ;
cin >> c¢;
cin.ignore ();

switch (c) {

case ’'1’:
Push(coda);
break ;

case ’2’:
Top(coda);
break ;

case ’3’:
Pop(coda);
break ;

case ’4’:
Somma(coda);
break ;

case ’'5’:
Svuota(coda);
break;

case ’6’:
Count (coda);
break ;

case ’'7’:
Empty(coda);
break ;

case ’'8’:
break ;

default:

cout << "Scelta_non_valida.\n";

break ;
} while (¢ != ’8);

return 0;

SC. Soluzioni degli esercizi su code

102

}

void stampaMenu () {
cout << endl;
cout << "1._Push" << endl;
cout << "2._Top" << endl;
cout << "3._Pop" << endl;
cout << "4._Somma" << endl;
cout << "5._Svuota" << endl
cout << "6._Count" << endl;
cout << "7._Empty" << endl;
cout << "8._Esci" << endl;
cout << endl;
cout << "Scelta:_";

}

void Push(Coda& c) {
TElem el;
cout << "lInserire_elemento:_";
cin >> el;
c.Push(el);

}

void Top(Coda& c) {
if (!c.Empty())

cout << "Elemento_di_testa:_" << c¢.Top() << endl;

else

cout << "Coda_vuota." << endl;

}

void Pop(Coda& c) {
if (!c.Empty())

cout << "Elemento_di_testa:_." << c.Pop() << endl;

else

cout << "Coda_vuota." << endl;

}

void Somma(Coda& c) {

cout << "Somma_elementi:_" << c.Somma() << endl;

}

void Svuota(Coda& c¢) {
c.Svuota ();
cout << "Coda_svuotata.\n";

}

void Count (Coda& c) {

cout << "Numero_elementi:_" << c¢.Count() << endl;

}

void Empty(Coda& c) {

if (c.Empty())
cout << "True." << endl;

else

cout << "False." << endl;

SC. Soluzioni degli esercizi su code 103

SC.2 Coda con Perdite

Traccia a pag. 32

#include <iostream>
#include <stdlib .h>

using namespace std ;
typedef int TElem;

struct Record;
typedef Recordsx PRec;
typedef struct Record {
TElem el;
PRec succ;

s

class Coda {

private:
PRec head;
PRec tail;
const unsigned int posti;
int nelem;

public:
Coda(unsigned int _ posti);
“Coda ();

bool Push(const TElem& e);
TElem Top() const;

TElem Pop ();

TElem Pop(unsigned int n);
void Svuota ();

unsigned int Count() const;
bool Empty() const;

s

Coda::Coda(unsigned int posti): head(0), tail (0), posti(_ posti), nelem(0) {

}

Coda::~ Coda() {
Svuota ();

bool Coda::Push(const TElem& e) {
if (nelem = posti)
return false;

//Creo un nuovo elemento mnell "heap
PRec temp = new Record;

temp—>el = e;

temp—>succ = 0;

//se c¢’é un elemento di coda questo deve puntare al nuovo elemento
if (tail)

tail —>succ = temp;

//in ogni caso la coda punterd al nuovo elemento
tail = temp;

//se la testa non punta ad un elemento, deve puntare al nuovo elemento:

SC. Soluzioni degli esercizi su code 104

//la coda, cioé, era wvuota al momento dell 'inserimento
if (!head)
head = temp;

nelem-++;

return true;

}

TElem Coda::Top() const {
if (head)
return head—>el;
}

TElem Coda::Pop() {
if (head) {
PRec temp = head;
TElem el temp = temp—>el;

//head passa a puntare all ’elemento successivo
head = head—>succ;

//se non punta a niente vuole dire che la coda conteneva un solo elem.
//anche tail quindi deve puntare a 0

if (!'head)
tail = 0;
nelem ——;

delete temp;
return el temp;
}
}

TElem Coda::Pop(unsigned int n) {
if (head) {
TElem el = Pop();

//estrazione dei restanti elementi: si usa il metodo Pop();
for (int i = 2; (i <= n) && head; i++)
Pop () ;

return el;

}
}

void Coda::Svuota() {

while (head != 0) {
PRec tbd = head;
head = head—>succ;
delete tbd;

}

head = tail = 0;

nelem = 0;

}

unsigned int Coda::Count () const {
return nelem;
}

bool Coda::Empty() const {
return (nelem == 0);

SC.

Soluzioni degli esercizi su code

105

}

void
void
void
void
void
void
void
void

int

{

stampaMenu () ;
Push (Coda& c);
Top(Coda& c¢);
Pop(Coda& c);
PopMany (Coda& c);
Svuota(Coda& c);
Count (Coda& c¢);
Empty (Coda& ¢);

main ()

char c;
unsigned int i;

cout << "Inserire_il _numero_massimo_di_elementi_in_coda:_";

cin >> ij;

Coda coda(i);

do {

}

stampaMenu () ;
cin >> c¢;
cin.ignore ();

switch (c) {

case '17:
Push(coda);
break ;

case '27:
Top(coda);
break ;

case ’37:
Pop(coda);
break ;

case '47:
PopMany (coda) ;
break ;

case ’'5H’:
Svuota(coda);
break;

case '67:
Count (coda);
break ;

case '77:
Empty(coda);
break ;

case ’'8’:
break;

default :
cout << "Scelta_non_valida
break ;

while (¢ != ’8’);

return 0;

}

void

stampaMenu () {

cout << endl;
cout << "1._Push" << endl;

An';

SC. Soluzioni degli esercizi su code

106

cout << "2._Top" << endl;
cout << "3._Pop" << endl;
cout << "4._PopMany" << endl;
cout << "5._Svuota" << endl
cout << "6._Count" << endl;
cout << "7._Empty" << endl;
cout << "8._Esci" << endl;
cout << endl;

cout << "Scelta:_";

}
void Push(Coda& c) {
TElem el;
cout << "Inserire_elemento:_";
cin >> el;
if (c.Push(el))
cout << "Elemento_inserito.\n";
else
cout << "Elemento_ NON_inserito.\n";
}

void Top(Coda& c) {
if (!c.Empty())
cout << "Elemento_di_testa:_." << c¢.Top() << endl;
else
cout << "Coda_vuota." << endl;

}

void Pop(Coda& c) {
if (!c.Empty())

cout << "Elemento_di_testa:_." << c.Pop() << endl;
else
cout << "Coda_vuota." << endl;
}
void PopMany(Coda& c) {
int i;
cout << "Quanti_elementi_estrarre?_";
cin >> ij;
if (!c.Empty())
cout << "Elemento_di_testa:_." << c.Pop(i) << endl;
else
cout << "Coda_vuota." << endl;
}

void Svuota(Coda& c¢) {
c.Svuota ();
cout << "Coda_svuotata.\n";

}

void Count (Coda& c) {
cout << "Numero_elementi:_" << c¢.Count() << endl;
}

void Empty(Coda& c¢) {
if (c.Empty())
cout << "True." << endl;
else
cout << "False." << endl;

SC. Soluzioni degli esercizi su code 107

SC.3 Coda a Priorita

Traccia a pag. 33
Si vuole una coda in cui gli elementi possano essere liberamente accodati
e siano connotati da uno tra due possibili livelli di priorita. Il prelievo di
un elemento dalla coda dovra rispettare, in primis, il livello di priorita e,
nell’ambito degli elementi aventi la stessa priorita, la disciplina first-in-first-
out (FIFO) di una coda.

La traccia specifica esclusivamente il comportamento “esteriore” della
struttura dati, senza definire alcun dettaglio di natura implementativa. Per
ottenere una struttura avente il comportamento specificato é possibile seguire
diverse strade. Di seguito sono riportate alcune possibilita.

Approccio 1

La coda a priorita pud essere immaginata formata da una sequenza di ele-
menti costituita a sua volta da due sotto-sequenze (vedi Figura SC.1):

e una prima sotto-sequenza, che parte dalla testa, che comprende gli
elementi a priorita alta;

e una successiva sotto-sequenza, che si estende fino alla coda, che com-
prende gli elementi a priorita bassa.

Una o entrambe queste sotto-sequenze possono in generale essere vuote.

Dal momento che le operazioni di prelievo (Pop ()) e di inserimento a bassa
prioritd (PushLow()) corrispondono in questo caso alle normali operazioni
usate nel caso di una classica coda, I'unica operazione nuova da implementare
consiste nell’inserimento in coda di un elemento a priorita alta (PushHigh()).
Tale operazione prevede 'aggiunta di un elemento “in coda” agli elementi a
priorita alta. In quest’ottica risulta utile definire un puntatore h aggiuntivo
posizionato sull’ultimo degli elementi a priorita alta. Tale nuovo puntatore
puntera alla coda degli elementi ad alta priorita, oppure varra zero in caso
di assenza di tali elementi.

File PriorityQueue.h

typedef int TElem;

struct Record;
typedef Records* PRec;

class PriorityQueue {

SC. Soluzioni degli esercizi su code

108

t h C

Figura SC.1: Una sequenza di elementi formata da due sotto-sequenze

consecutive

private:
PRec head;
PRec tail; //puntatore alla coda

PRec tail _h; //puntatore alla coda della sottosequenza ad alta priorita

void Push(const TElem& e); //classico Push in coda
public:

PriorityQueue ();

“PriorityQueue ();

void PushLow (const TElem& e)
void PushHigh (const TElem& e
TElem Pop ();

void Clear ();

bool Empty() const;

)s

File PriorityQueue.cpp

#include "PriorityQueue.h"

typedef struct Record {
TElem el;
PRec succ;

b
PriorityQueue :: PriorityQueue (): head(0), tail(0), tail h(0) {}

PriorityQueue ::” PriorityQueue () {
Clear ();

void PriorityQueue ::Push(const TElem& e) { //classico Push in coda
//Creo un nuovo elemento mnell "heap
PRec temp = new Record;
temp—>el = e;
temp—>succ = 0;

//se c’é un elemento di coda questo deve puntare al nuovo elemento
if (tail)
tail —>succ = temp;

//in ogni caso la coda punterd al nuovo elemento
tail = temp;

//se la testa non punta ad un elemento, deve puntare al nuovo elemento:

//la struttura, cioé, era vuota al momento dell inserimento

SC. Soluzioni degli esercizi su code 109

if (!'head)
head = temp;

}

void PriorityQueue ::PushLow (const TElem& e) {
Push(e); //si riduce ad un classico inserimento in coda

void PriorityQueue :: PushHigh (const TElem& e) {
if (ltail h) {

//non ci sono elementi ad alta priorita: aggiunta in testa
if ('head) //la coda é wuota?

Push(e); //inserisco con Push()
else {

PRec temp = new Record;

temp—>el = e;

temp—>succ = head;

head = temp;

}
tail h = head; //l’elemento inserito é in testa: tail h deve puntarvi
} else {

//inserisco

PRec temp = new Record;
temp—>el = e;

temp—>succ = tail h-—>succ;
tail h—>succ = temp;

tail h = temp; //aggiorno il puntatore tail h
//aggiorno tail se [|’elemento aggiunto ¢é in ultima posizione

if (!tail h—>succ)
tail = tail h;

}

}

TElem PriorityQueue ::Pop() {
if (head) {

PRec temp = head;
TElem el temp = temp—>el;

if (head = tail h) //ho prelevato [’unico elemento a prioritai alta?
tail h = 0; //allora non ce ne sono pit

//head passa a puntare all ’elemento successivo
head = head—>succ;

//se non punta a niente vuole dire che la coda conteneva un solo elem.
//anche tail quindi deve puntare a 0
if (!head) {
tail = 0;
tail _h = 0;
}

delete temp;

return el temp;

SC. Soluzioni degli esercizi su code 110

CODA A PRIORITA

7 - T TTFETsEEFEEsEEsEEsEEEEEEEEES ~
/ \
I \
| |
| 1
SOTTO-CODA AD
I HIH|H|H| % aApRrIORITA
I . i SOTTO-CODA A
I L{L|L|L|L/| BASSAPRIORITA
| |
| |
\ |
\ /
~ 7

Figura SC.2: Coda a priorita formata da due classiche code affiancate

void PriorityQueue :: Clear () {
while (head != 0) {
PRec tbd = head;
head = head—>succ;
delete tbd;

}

head = tail = tail h = 0;
}

bool PriorityQueue ::Empty() const {
return !head;

}
Approccio 2

La coda a priorita pud essere immaginata composta di due classiche code
affiancate (vedi Figura SC.2), ciascuna destinata a contenere gli elementi di
una singola classe. Il metodo PushLow() accoda nella coda a bassa priorita.
Il metodo PushHigh(), viceversa, in quella ad alta priorita. Il metodo Pop ()
restituisce I’elemento di testa nella coda ad alta priorita, se esiste; in caso
contrario restituisce l’elemento di testa nella coda a bassa priorita.
Servendosi del meccanismo dell’aggregazione stretta tra classi, le due co-
de affiancate risultano istanze della classe Coda (vedi §EC.1). Definendo tali
istanze come membri privati della classe PriorityQueue esse non risulteran-
no visibili dall’esterno della struttura (information hiding), la quale conti-
nuera ad apparire ai suoi utenti come una singola coda dotata dei meccanismi
di priorita richiesti.
#include "coda.h"
class PriorityQueue {
private:

Coda coda 1;
Coda coda_h;

SC. Soluzioni degli esercizi su code

111

PriorityQueue (const PriorityQueue& c); //inibisce la copia...

PriorityQueue& operator—(const PriorityQueue& c); //..

public:
PriorityQueue ();

void PushLow (const TElem& e)
void PushHigh (const TElem& e
TElem Pop();

void Clear ();

bool Empty() const;

s

)s

#include "priorityqueue.h"

void PriorityQueue ::PushLow (const TElem& e) {
coda_1.Push(e);
}

void PriorityQueue :: PushHigh (const TElem& e) {
coda h.Push(e);
}

TElem PriorityQueue ::Pop() {
if (!coda h.Empty())
return coda_h.Pop();
else
return coda 1.Pop();

}

void PriorityQueue :: Clear () {
coda h.Svuota();
coda_1.Svuota ();

}

bool PriorityQueue ::Empty() const {
return (coda h.Empty () && coda 1.Empty());
}

Approccio 3

€

[’assegnazione

La coda a priorita pud essere una normale coda in cui i record, disposti
secondo 'ordine di inserimento, vengono etichettati con la loro priorital (ve-
di Figura SC.3). In questo caso sia il metodo PushHigh() che il metodo
PushLow (), previa opportuna etichettatura, effettuano un’aggiunta in coda.
E il metodo Pop() in questo caso a prendersi carico della restituzione del
“giusto” elemento. Tale operazione viene effettuata scorrendo tutta la strut-
tura alla ricerca del primo elemento ad alta priorita e restituendolo dopo
averlo eliminato dalla coda. In assenza di un elemento ad alta priorita viene

restituito l'eventuale elemento di testa.

!Questo & possibile previa definizione di un’opportuna struct che contenga un TElem

ed un bool indicante la relativa priorita.

SC. Soluzioni degli esercizi su code 112

ellel|el|el|el]|el]|el]|el]el

Figura SC.3: Sequenza di elementi “etichettati”

Tale implementazione, pur prestandosi a diverse ottimizzazioni, non ri-
sulta particolarmente efficiente, richiedendo un ciclo di ricerca per ogni ope-
razione Pop () effettuata. La sua implementazione non € qui riportata.

SC.4 PopMinMax

Traccia a pag. 34

//Metodo privato

//Il metodo seguente estrae n elementi e ne restituisce il min ed il maz
void Coda:: PopMinMax(unsigned int n, TElem& min, TElem& max) {
min = max = Pop(); //Assegno min e maz all elemento di testa

unsigned int i = 1;
//confronto con gli altri n—1 elementi segquenti: n—1 ilterazioni
//(se la coda non si svuola prima)
while ((i < n) && !'Empty()) {
TElem el = Pop();
if (el < min)

min = el;
if (el > max)

max = el;
i3

}
}

//Metodi pubblici

//Il metodo seguente chiama _PopMinMaz() e restituisce il massimo
TElem Coda::PopMax(unsigned int n) {

TElem min, max;

_PopMinMax(n, min, max);

return max;

}

//Il metodo seguente chiama _PopMinMaz() e restituisce il minimo
TElem Coda::PopMin(unsigned int n) {

TElem min, max;

_PopMinMax(n, min, max);

return min;

}

Capitolo SX

Soluzioni degli altri

SX.1 Accumulatore

#include <iostream>
using namespace std ;

class Accumulatore {
private:
float a;
public:
Accumulatore () { Reset(); };
void Add(float val) { a 4+= val; };
void Reset() { a = 0; };
float GetValue() const { return a; };

s

int main ()

{
Accumulatore a;
float f;
char ch;

cout << "’
cout << "’
cout << "’
cout << "’

do {
cin >> chj
switch (ch) {
case ’a’:
cout << "Insert_value:_";
cin >> f;
a.Add(f);
cout << "Value_added.\n";
break ;
case 'r’:
a.Reset ();
cout << "Reset.\n";

113

esercizl

Traccia a pag. 36

SX. Soluzioni degli altri esercizi 114

break ;
case ’s’:
cout << "The_value_is_ " << a.GetValue() << endl;
break ;
case ’e’:
break ;
default:

cout << "Invalid _command.\n";
}
} while (ch != ’e’);

return 0;

}

In questo esercizio i metodi della classe Accumulatore vengono imple-
mentati direttamente nell’ambito del costrutto class. Questa tecnica é par-
ticolarmente conveniente nel caso di metodi molto semplici (come questi co-
stituiti da una sola riga), ed é equivalente a rendere i metodi inline attraverso
I’approccio classico alla stesura dei metodi di una classe e 1'uso della keyword
inline.

SX.2 Cifratore

Traccia a pag. 36

#include <iostream >
#include <stdlib.h>

using namespace std ;

class Cifratore {
private:

int chiave;

char CifraCarattere(char ¢, bool cifra) const;
public:

Cifratore (int c);

void Cifra (charx str) const;

void Decifra (char*x str) const;

s

Cifratore :: Cifratore (int c): chiave(c) {

}

char Cifratore :: CifraCarattere(char ¢, bool cifra) const {
if (cifra)
return ¢ + chiave;
else
return ¢ — chiave;

}

void Cifratore :: Cifra (charx str) const{
while (xstr) {
xstr = CifraCarattere(*xstr, true);
Str++;
}
}

SX. Soluzioni degli altri esercizi 115

void Cifratore :: Decifra (char* str) const {
while (xstr) {
xstr = CifraCarattere(*xstr, false);
sStr++;
}
}

int main()

{
char str[100];
int chiave;

cout << "Inserisci_la_parola_da_cifrare:_";
cin >> str;

cout << "Inserisci_la_chiave_di_cifratura:_";
cin >> chiave;

Cifratore c(chiave);

cout << "Stringa:_" << str << endl;
c.Cifra(str);

cout << "Cifratura:_" << str << endl;
c.Decifra(str);

cout << "Decifratura:_" << str << endl;

system ("PAUSE");
return 0;

SX.3 Lista Della Spesa

Traccia a pag. 37

#include <iostream>
using namespace std ;

const int MAX CHARS = 20;
typedef char Nome|MAX CHARS|;
typedef float Quantita;

struct Articolo {
Nome n;
Quantita q;

b

struct Record;
typedef Records* PRec;
struct Record {
Articolo art;
PRec succ;

s

class ListaDellaSpesa {
private:
PRec first ;
bool Ricerca (const Nome n, PRec& p) const;

SX. Soluzioni degli altri esercizi 116

bool Elimina(PRec& p, const Nome n);
bool StringheUguali(const charx sl, const charx s2) const {
return (strcmp(sl, s2) = 0);

}

//inibisce la copia mediante costruttore

ListaDellaSpesa (const ListaDellaSpesa&) {};

//inibisce la copia mediante assegnazione

void operator= (const ListaDellaSpesa&) {};
public:

ListaDellaSpesa ();

“ListaDellaSpesa ();

Quantita Aggiungi(const Nome n, Quantita q);
bool Elimina(const Nome n);

Quantita GetQuantita (const Nome n) const;
void Svuota();

void Stampa() const;

b
ListaDellaSpesa :: ListaDellaSpesa (): first (0) {

}

ListaDellaSpesa :: ~ ListaDellaSpesa () {
Svuota ();

}

bool ListaDellaSpesa :: Ricerca (const Nome n, PRec& p) const {
//Questo metodo cerca [’articolo avente il nome specificato e restituisce:

// — true o false, a seconda che [’ articolo sia stato trovato o meno;
// — il puntatore all’ultimo record wvisitato .
if (first) {
p = first;

if (StringheUguali(p—>art.n, n))
return true;
else {
while (p—>succ) {
p = p—>succ;
if (StringheUguali(p—>art.n, n))
return true;
}
}
}

return false;

}

bool ListaDellaSpesa :: Elimina(PRec& p, const Nome n) {
//metodo ricorsivo di eliminazione di un elemento dalla lista
if (p) {
if (StringheUguali(p—>art.n, n)) {
PRec tbd = p;
p = tbd—>succ;
delete tbd;
return true;
}
else
return Elimina(p—>succ, n);

}

return false;

SX. Soluzioni degli altri esercizi 117

Quantita ListaDellaSpesa :: Aggiungi(const Nome n, Quantita q) {
if (!'first) {
first = new Record;
first —>succ = 0;
strepy (first —art.n, n);
first —art.q = q;
return q;

else {
PRec p;

if (Ricerca(n, p)) { //esiste nella lista un elemento avente il nome n?
//trovato => ora p punta all ’elemento avente nome n
p—art.q += q;

else {
//non trovato => ora p punta all ’ultimo elemento della lista
p—>succ = new Record;

p = p—>succ;
strcpy (p—>art.n, n);
p—art.q — q;
p—>succ = 0;

}

return p—>art.q;

}
}

bool ListaDellaSpesa :: Elimina(const Nome n) {
return _ Elimina(first , n);
}

Quantita ListaDellaSpesa :: GetQuantita (const Nome n) const {
PRec p;
if (Ricerca(n, p))
return p—>art.q;
else
return 0;

}

void ListaDellaSpesa ::Svuota() {
if (first) {
PRec tbd = first ;
PRec p;

while (tbd) {
p = tbd—>succ;
delete tbd;
tbd = p;
}
}
first = 0;

}

void ListaDellaSpesa ::Stampa() const {
PRec p = first;
while (p) {
cout << p—>art.n << ":_ " << p—>art.q << endl;
p = p—>succ;
}
}

SX. Soluzioni degli altri esercizi

118

void stampa_menu() {
cout << "1:_Aggiungi_articolo.\n";
cout << "2:_Elimina_articolo.\n";
cout << "3:_Quantita’_articolo.\n";
cout << "4:_Svuota_lista.\n";
cout << "b5:_Stampa_lista.\n";
cout << "6:_Esegui_test_veloce.\n";
cout << "T7:_Esci.\n";

}

void Aggiungi(ListaDellaSpesa& 1);
void Elimina(ListaDellaSpesa& 1);
void GetQuantita (ListaDellaSpesa& 1);
void Svuota(ListaDellaSpesa& 1);
void Stampa(ListaDellaSpesa& 1);
void TestVeloce(ListaDellaSpesa& 1);

int main()

{

ListaDellaSpesa 1;

int scelta;
do {
stampa_menu();
cin >> scelta;
switch (scelta) {
case 1:
Aggiungi(l);
break ;
case 2:
Elimina(l);
break ;
case 3:
GetQuantita (1);
break ;
case 4:
Svuota(l);
break ;
case b:
Stampa(l);
break;
case 6:
TestVeloce(l);
break ;
case T7:
break;
default:

cout << "Scelta_non_valida.\n";

break ;
} while (scelta != 7);

return 0;

}

void Aggiungi(ListaDellaSpesa& 1) {
Nome n;
Quantita q, qq;
cout << "Nome_articolo:_";
cin >> n;
cout << "Quantita ’:_";

SX. Soluzioni degli altri esercizi

119

cin >> q;

qq = l.Aggiungi(n, q);

cout << "Ora_la_quantita’_e’_" << qq << endl;
}
void Elimina(ListaDellaSpesa& 1) {

Nome n;

cout << "Nome_articolo:_";

cin >> n;

if (1.Elimina(n))
cout << "Articolo_eliminato." << endl;
else
cout << "Articolo_non_eliminato." << endl;
}

void GetQuantita(ListaDellaSpesa& 1) {
Nome n;
Quantita q;
cout << "Nome_articolo:_";
cin >> n;
q = l.GetQuantita(n);
cout << "La_quantita’_e’_ " << q << endl;

}

void Svuota(ListaDellaSpesa& 1) {
l.Svuota ();
cout << "Lista_svuotata." << endl;

}

void Stampa(ListaDellaSpesa& 1) {
cout << "Lista:" << endl;
1.Stampa ();

void TestVeloce(ListaDellaSpesa& 1) {

l.Svuota ();
.Aggiungi("Pane", 1);
.Aggiungi("Latte", 1.5);
.Aggiungi("Zucchero", 1);
.Aggiungi("Prosciutto", 0.3);
.Stampa();

—— — — —

cout << "Latte:_ " << 1.Aggiungi("Latte", 0.5) << endl;

1. Elimina("Pane");
1. Elimina("Zucchero");
l.Elimina("Prosciutto");

cout << "Latte:_" << l.Aggiungi("Latte", 0.5) << endl;

l.Svuota();
1. Stampa ();

}

SX.4 Predittore di Temperatura

Traccia a pag. 38

I metodo EstimateTemp() deve effettuare un’estrapolazione lineare della

temperatura basandosi sui dati delle ultime due letture comunicate.

formula da utilizzare ¢é la seguente:

La

SX. Soluzioni degli altri esercizi 120

. Ty =T
T=2—(t—t)+ Ty
to — 11

dove T' & la stima della temperatura all’istante t; T, Th, t; e t5 sono
le ultime due letture della temperatura ed i relativi due istanti di lettura,
rispettivamente.

N.B.: Variando l'implementazione del metodo EstimateTemp() (ed eventualmente la
sezione private della classe) diviene possibile operare stime piu accurate della temperatu-
ra; si potrebbe per esempio pensare di operare estrapolazioni di ordine superiore al primo.
Per giunta cio, non alterando l'interfaccia della classe, non avrebbe alcuna ripercussione
sui moduli utenti del predittore.

#include <iostream>
#include <stdlib .h>

using namespace std ;

typedef int Time;
typedef float Temp;

class TempPredictor {
private:
Time timel;
Time time2;
Temp templ ;
Temp temp2;
public:
TempPredictor (Time time, Temp temp);
void SetTemp(Time time, Temp temp);
Temp EstimateTemp (Time time) const;

s

TempPredictor :: TempPredictor (Time time, Temp temp):

timel (time —1), time2(time), templ(temp), temp2(temp) {
//Impostare in questo modo le temp. ed i tempi significa imporre che le
//ultime due letture della temperatura hanno fornito un risult. pari o temp
//e su queste ultime due letture bisogna estrapolare la stima.

}
void TempPredictor::SetTemp (Time time, Temp temp) {
timel = time2; //"sposta” [’ultima lettura nella penultima
templ = temp?2;
time2 = time; //aggiorna [’ultima lettura con i dati proven. dall ’utente
temp2 = temp;
}

Temp TempPredictor:: EstimateTemp (Time time) const {
return ((temp2—templ)/(time2—timel))*(time—timel) + templ;

}

int main()

{

cout << "Lettura:_all’istante_0:_la_temperatura_vale_14\n";

SX. Soluzioni degli altri esercizi 121

//Posso costruire il predittore con questi dati.
TempPredictor tp(0,14);

cout << "Stima:_la_temperatura_all’istante_10_sara’_ "

<< tp.EstimateTemp(10) << endl;
cout << "Stima:_la_temperatura_all’istante_20_sara’_"

<< tp.EstimateTemp (20) << endl;

cout << "Lettura:_all’istante_5:_la_temperatura_vale_16\n";

//Comunico la lettura al predittore
tp.SetTemp (5, 16);

cout << "Stima:_la_temperatura_all’istante_10_sara’_ "

<< tp.EstimateTemp (10) << endl;
cout << "Stima:_la_temperatura_all’istante_12_sara’_"

<< tp.EstimateTemp (12) << endl;

cout << "Lettura:_all’istante_10:_la_temperatura_vale_16\n";

//Comunico la lettura al predittore
tp.SetTemp (10, 16);

cout << "Stima:_la_temperatura_all’istante_15_sara’_"

<< tp.EstimateTemp(15) << endl;
cout << "Stima:_la_temperatura_all’istante_20_sara’_"

<< tp.EstimateTemp (20) << endl;

system ("PAUSE");
return 0;

SX.5 Contenitore

Traccia a pag. 39

#include <iostream >
using namespace std ;

const int NMAX = 50;
typedef char Nome|[NMAX];
typedef int Peso; //si tratti il peso come wvalore intero (p.es. grammi)

struct Oggetto {
Nome n;
Peso p;

I

struct Cella;
typedef Cellax PCella;

struct Cella {
Oggetto elem;
PCella succ;

s

class Contenitore {

SX. Soluzioni degli altri esercizi 122

private:
PCella first;
Peso capacita;
Peso somma_ pesi;
unsigned int nelem;
public:
Contenitore (Peso max);
“Contenitore ();

bool Inserisci(charx n, Peso p);
void Svuota ();

Peso PesoComplessivo() const;
Peso PesoResiduo() const;
unsigned int NumElem () const;
void Stampa() const;

s

Contenitore :: Contenitore (Peso max): first (0), capacita (max),
somma_pesi(0), nelem (0) {
}

Contenitore ::~ Contenitore () {
Svuota ();

bool Contenitore :: Inserisci(charx n, Peso p) {
if (p <= capacita — somma pesi) {
PCella ¢ = new Cella;
strcpy (c—>elem.n, n);
c—>elem.p = p;

c—>succ = first;

first = c;

somma _pesi = somma_pesi + p; //il contenitore é ora pid pesante di p...
nelem++; //...e c’¢ un elemento in piu.

return true;

}

return false;

}

void Contenitore ::Svuota() {
while (first) {
PCella tbd = first;

first = first —>succ;
delete tbd;

}

somma_ pesi = 0;

nelem = 0;

}

Peso Contenitore :: PesoComplessivo() const {
return somma_ pesi;

}

Peso Contenitore :: PesoResiduo() const {
return capacita — somma_pesi;

}

unsigned int Contenitore ::NumElem() const {

SX. Soluzioni degli altri esercizi 123

return nelem;

}

void Contenitore ::Stampa() const {
PCella p = first;
while (p) {
cout << p—>elem.n << ", " << p—>elem.p << endl;
p = p—>succ;
}
}

void Inserisci(Contenitore& c¢);

void Svuota(Contenitore& c);

void PesoComplessivo(Contenitore& c);
void PesoResiduo(Contenitore& c);
void NumeroElementi(Contenitore& c);
void Stampa(Contenitore& c);

void stampa menu() {
cout << "1l:_Inserisci.\n";
cout << "2:_Svuota.\n";
cout << "3:_Peso_Complessivo.\n";
cout << "4:_Peso_Residuo.\n";
cout << "5:_Numero_Elementi.\n";
cout << "6:_Stampa.\n";
cout << "T7:_Esci.\n";

}

int main ()
{
Peso p;
cout << "Inserisci_peso MAX_contenitore:_";
cin >> p;
Contenitore c(p);

int scelta;
do {
stampa_menu();
cin >> scelta;
switch (scelta) {
case 1:
Inserisci(c);
break ;
case 2:
Svuota(c);
break ;
case 3:
PesoComplessivo(c);
break ;
case 4:
PesoResiduo(c);
break ;
case 5:
NumeroElementi(c);
break ;
case 6:
Stampa(c);
break ;
case T:
break ;
default:
cout << "Scelta_non_valida.\n";

SX. Soluzioni degli altri esercizi

124

break ;
} while (scelta != 7);

return 0;

}

void Inserisci(Contenitore& c¢) {
char n[NMAX];
Peso p;

cout << "lInserisci_nome_elemento:_";
cin >> n;
cout << "Inserisci_peso_elemento:_";
cin >> p;
if (c.Inserisci(n, p))

cout << "Elemento_inserito.\n";
else

cout << "Elemento_ NON_inserito.\n";

}

void Svuota(Contenitore& c) {
c.Svuota ();
cout << "Contenitore_svuotato.\n";

}

void PesoComplessivo(Contenitore& c) {
cout << "Il_peso_complessivo_e ’:_" << c¢.PesoComplessivo() << endl;

}

void PesoResiduo(Contenitore& c) {
cout << "Il_peso_residuo_e’:_" << c.PesoResiduo() << endl;

}

void NumeroElementi(Contenitore& c) {
cout << "N._Elem:_" << c¢.NumElem () << endl;

}

void Stampa(Contenitore& c) {
cout << "Il_contenuto_del_contenitore_e’:\n";
c.Stampa ();
cout << endl;

}

SX.6 Lista Prenotazioni

Traccia a pag. 41

#include <iostream >
using namespace std ;
const int MAX CHARS = 20;
typedef int Matricola;
typedef char Nome|[30];

struct Prenotazione {
Matricola mat;

SX. Soluzioni degli altri esercizi 125

Nome nom;

s

class ListaPrenotazioni {

private:
Prenotazionex pv; //puntatore a vettore prenotaz. dinamicam. allocato
int posti; //numero di posti disponibili
int nelem; //riempimento del wvettore

int Ricerca (Matricola m) const;
public:

ListaPrenotazioni(int n);

“ListaPrenotazioni();

bool Prenota(Matricola m, Nome n);

bool EliminaPrenotazione (Matricola m);

int GetPostiDisponibili() const;

bool EsistePrenotazione (Matricola m) const;
void Svuota ();

void Stampa();

b

ListaPrenotazioni:: ListaPrenotazioni(int n): posti(n), nelem(0) {
pv = new Prenotazione [posti|;

}

ListaPrenotazioni::” ListaPrenotazioni() {

delete [| pv;

int ListaPrenotazioni:: Ricerca (Matricola m) const {
for (int i = 0; i < nelem; i++)
if (pv[i].mat — m)
return i;

return —1;

}

bool ListaPrenotazioni::Prenota(Matricola m, Nome n) {
if ((GetPostiDisponibili() > 0) && (!EsistePrenotazione (m)))
pv|nelem |.mat = m;
strcpy (pv[nelem].nom, n);

nelem-++;
return true;

}

return false;

}

bool ListaPrenotazioni::EliminaPrenotazione (Matricola m) {
int i = Ricerca(m);

if (i >=0) {
for (int j = i; j < nelem — 1; j++)
pv[ij] = pv[j+1];

nelem ——;

return true;

}

SX. Soluzioni degli altri esercizi 126

return false;

}

int ListaPrenotazioni:: GetPostiDisponibili() const {
return posti — nelem;

}

bool ListaPrenotazioni:: EsistePrenotazione (Matricola m) const {
return (Ricerca(m) >= 0);

}

void ListaPrenotazioni::Svuota() {
nelem = 0;

}

void ListaPrenotazioni::Stampa() {
for (int i = 0; i < nelem; i++)
cout << pv[i]|.mat << ":_" << pv|[i]|.nom << endl;

cout << endl;

}

void stampa_menu() {
cout << "1:_Prenota.\n";
cout << "2:_Elimina_prenotazione.\n";
cout << "3:_Posti_disponibili.\n";
cout << "4:_Esiste_Prenotazione.\n";
cout << "5:_Svuota.\n";
cout << "6:_Stampa.\n";
cout << "T7:_Esci.\n";

}

void Prenota(ListaPrenotazioni& 1);
void Elimina(ListaPrenotazioni& 1);
void GetPostiDisponibili(ListaPrenotazioni& 1);
void EsistePrenotazione (ListaPrenotazioni& 1);
void Svuota(ListaPrenotazioni& 1);
void Stampa(ListaPrenotazioni& 1);

int main ()

{
int n;
cout << "Inserire_il_numero_di_posti_disponibili:_";
cin >> n;

ListaPrenotazioni 1(n);

int scelta;
do {
stampa_menu();
cin >> scelta;
switch (scelta) {
case 1:
Prenota(1l);
break ;
case 2:
Elimina(l);
break ;
case 3:
GetPostiDisponibili(l);
break ;
case 4:

SX. Soluzioni degli altri esercizi 127

EsistePrenotazione (1);
break ;
case 5:
Svuota(l);
break;
case 6:
Stampa(l);
break ;
case T:
break ;
default:
cout << "Scelta_non_valida.\n";
break ;

} while (scelta !

7)s

return 0;

}

void Prenota(ListaPrenotazioni& 1) {
Matricola m;
Nome n;

cout << "Inserisci_Matricola:_";
cin >> m;

cout << "Inserisci_nome:_";

cin >> n;

if (1.Prenota(m, n))
cout << "Prenotazione_effettuata.\n";
else
cout << "Prenotazione_non_effettuata.\n";
}

void Elimina(ListaPrenotazioni& 1) {
Matricola m;

cout << "Inserisci_Matricola:_";
cin >> m;

if (1.EliminaPrenotazione (m))
cout << "Prenotazione_eliminata .\n";
else
cout << "Prenotazione_non_eliminata.\n";
}

void GetPostiDisponibili(ListaPrenotazioni& 1) {
cout << "I_posti_disponibili_sono:_";
cout << 1.GetPostiDisponibili () << endl;

}

void EsistePrenotazione (ListaPrenotazioni& 1) {
Matricola m;

cout << "Inserisci_Matricola:_";
cin >> m;

if (1.EsistePrenotazione (m))

cout << "Prenotazione_esistente.\n";
else

cout << "Prenotazione_non_esistente.\n";

SX. Soluzioni degli altri esercizi 128

void Svuota(ListaPrenotazioni& 1) {
l.Svuota ();
cout << "Lista_svuotata.\n";

}

void Stampa(ListaPrenotazioni& 1) {
1.Stampa ();

}

SX.7 Classifica

Traccia a pag. 42

#include <iostream>
#include <string.h>

using namespace std ;

const int NMAX = 50;
typedef char Nome[NMAX];

struct Record;
typedef Recordsx PRec;

typedef struct {

Nome n;

unsigned int punteggio;
} Squadra;

typedef Squadra TElem;
struct Record { //Singolo elemento (cella) della struttura

TElem el;
PRec succ;

b
class Classifica {
private:

PRec first ;
unsigned int nelem;

Classifica (const Classifica&); //inibisce la copia mediante costruttore
void operator— (const Classifica&); //inibisce [’assegnazione

unsigned int Elimina(const Nome& n);
void InserimentoOrdinato (const Nome& n, unsigned int punti);
public:
Classifica ();
“Classifica ();
unsigned int Aggiungi(const Nome& n, unsigned int punti);
void Svuota ();
void Stampa() const;
unsigned int Count() const;

s

Classifica :: Classifica (): first (0), nelem(0) {

SX. Soluzioni degli altri esercizi 129

}

Classifica::” Classifica () {
Svuota ();

}

unsigned int Classifica :: Elimina(const Nome& n) {

//Questo metodo elimina dalla struttura un eventuale elem. avente nome pari
//ad n. In caso di esistenza ne restituisce il punteggio, altrimenti
//restituisce 0.

//E’ il primo elemento? (Caso particolare)
if (first && (strcmp(first—>el.n, n) == 0)) {
PRec tbd = first ;
first = first —>succ;
unsigned int punti = tbd—>el.punteggio;
delete tbd;
nelem ——;
return punti;

}

//E’ un elemento successivo al primo?
PRec p = first;
while (p && p—>succ) {
//controllo se il successivo di p deve essere eliminato
if (strcemp(p—>succ—>el.n, n) = 0) {
PRec tbd = p—>succ;
p—>succ = tbd—>succ;
unsigned int punti = tbd—>el.punteggio;
delete tbhd;
nelem ——;
return punti;

}

p = p—>succ;

}

//Elemento non trovato
return 0;

}

void Classifica :: InserimentoOrdinato (const Nome& n, unsigned int punti) {
//Questo metodo effettua wun inserimento ordinato nella struttura, in base al
//campo punteggio. Si procede attraverso i seguenti passi:

// — se la lista é vuota si inserisce [’elemento e si esce;

// — si controlla se inserire in testa: se si, si inserisce e si esce;
// — si cerca il punto di inserimento attraverso una visita, si inserisce
// (eventualmente in coda) e si esce.

//In ogni caso alloco un nuovo record

PRec nuovo = new Record ;

strcpy (nuovo—>el.n, n);

nuovo—>el . punteggio = punti;

nelem++;

if (!first) { //Se la lista ¢ wvuota
first = nuovo; //Inserisco alla testa
nuovo—>succ = 0;

} else {

//Se il punteggio della nuova squadra ¢é maggiore della testa
if (punti >= first —el.punteggio) {
nuovo—>succ = first; //Inserisco in testa

SX. Soluzioni degli altri esercizi

130

first = nuovo;

} else { //Devo cercare il punto di
PRec p = first;
while (p && p—>succ) {

}

//Se sono qui, non ho ancora inserito: inserim.

//Devo inserire dopo [’elemento puntato da p?

inserzione

if (punti >= p—>succ—>el.punteggio) {

}

NnuOvVOo—>sSucC = p—>Succ;
p—>succ — nuovo;
return;

p = p—>succ;

p—>sucCc = nuovo;
nuovo—>succ = 0;

}
}
}

unsigned int Classifica
unsigned int p = Elimina(n); //Flimina dalla

InserimentoOrdinato (n,

return punti + p; //Restituisce il giusto punteggio

}

void Classifica ::Svuota() {
while (first) {
PRec tbd = first ;

first = first —succ;
delete tbd;

}

nelem = 0;

}

void Classifica ::Stampa() const {
PRec p = first;
while (p) {
cout << p—>el.n << ":_" << p—>el.punteggio << endl;
p = p—>succ;

}
}

unsigned int Classifica ::Count() const {
return nelem;

}

void stampa menu() {

cout
cout
cout
cout
cout

}

<<
<<
<<
<<
<<

"l:_Inserisci.\n";
"2:_Svuota.\n";
"3:_Stampa.\n";
"4:_Count.\n";
"5:_Esci.\n";

void Aggiungi(Classifica& 1);

void Svuota(Classifica& 1)
void Stampa(Classifica& 1);
5

)

void Count(Classifica& 1)

punti + p); //Lo (re)inserisce

lista

in coda,

alla quale punta p

:: Aggiungi(const Nome& n, unsigned int punti) {
[’elemento (se esiste)

al posto giusto

SX. Soluzioni degli altri esercizi

131

int main()
Classifica 1;

int scelta;
do {
stampa_menu();
cin >> scelta;
switch (scelta) {
case 1:
Aggiungi(l);

break ;

case 2:
Svuota(l);

break;

case 3:
Stampa(l);

break ;

case 4:
Count (1);

break ;

case 5:

break ;

default:

cout << "Scelta_non_valida.\n";

break ;
} while (scelta != 5);

return 0;

}

void Aggiungi(Classifica& 1) {
Nome n;
unsigned int punti;
cout << "Inserisci_nome:_";
cin >> n;
cout << "Inserisci_punti:_";
cin >> punti;

cout << "La_squadra_" << n << "_ora_ha_punti:_"

}

void Svuota(Classifica& 1) {
l.Svuota ();

cout << "Classifica_svuotata.\n";

}

void Stampa(Classifica& 1) {
1 .Stampa();
cout << endl;

}

void Count(Classifica& 1) {

<< l.Aggiungi(n,

cout << "Il_numero_di_elementi_e’:_ " << 1.Count() << endl;

}

punti) << ".\n";

SX. Soluzioni degli altri esercizi 132

SX.8 Agenzia Matrimoniale

Traccia a pag. 43

#include <iostream>
using namespace std ;

const int NMAX = 50;
typedef char Nome|NMAX]|; //Nome Persona

struct persona;

typedef struct Persona{
Nome n;
bool maschio;
Persona* coniuge ;

s

typedef Persona TElem;

struct Record;

typedef Records* PRec;

struct Record { //Singolo elemento (cella) della struttura
TElem el;
PRec succ;

s

class AgenziaMatrimoniale {
private:
PRec first ;

AgenziaMatrimoniale (const AgenziaMatrimoniale&); //inibisce la copia da costr.
void operator= (const AgenziaMatrimoniale&); //inibisce [’ ’assegnazione

PRec Cerca(Nome n) const;
public:

AgenziaMatrimoniale ();

“AgenziaMatrimoniale ();

bool AggiungiPersona (Nome n, bool sesso);
bool Sposa(Nome nl, Nome n2);

bool Coniugato(Nome n, bool& coniugato) const;
unsigned int NumeroSposi() const;

unsigned int NumeroCoppie() const;

void Svuota ();

void Stampa() const;

s

AgenziaMatrimoniale :: AgenziaMatrimoniale (): first (0) {

}

AgenziaMatrimoniale ::~ AgenziaMatrimoniale () {
Svuota ();

PRec AgenziaMatrimoniale :: Cerca(Nome n) const {
//Cerca nella lista la persona avente il nome specificato
//Restituisce il puntatore alla corrispondente cella se esiste, 0 altrim.
PRec p = first;
while (p) {
if (strcmp(p—>el.n, n) == 0)

SX. Soluzioni degli altri esercizi 133

return p;
p = p—>succ;

}

return 0;

}

bool AgenziaMatrimoniale :: AggiungiPersona (Nome n, bool maschio) {
if (Cerca(n))
return false;

//Inserimento in testa
PRec p = new Record;
strcpy (p—>el.n, n);

p—>el .maschio = maschio;
p—>el.coniuge = 0;
p—succ = first;

first = p;

return true;

}

bool AgenziaMatrimoniale :: Sposa(Nome nl, Nome n2) {
PRec pl = Cerca(nl);
//se il primo nome non & stato trovalto restituisce false
if (!pl)
return false;

PRec p2 = Cerca(n2);
//se il secondo nome non & stato trovato restituisce false
if (!p2)

return false;

//se i due mnomi sono uguali restituisce false
if (pl = p2)
return false;

//se il sesso ¢ uguale restituisce false
if (pl—>el.maschio == p2—>el.maschio)
return false;

//se una delle due persone é gia sposata restituisce false
if (pl—>el.coniuge || p2—>el.coniuge)
return false;

pl—>el.coniuge = &p2—>el;
p2—>el.coniuge = &pl—>el;

return true;

}

bool AgenziaMatrimoniale :: Coniugato (Nome n, bool& coniugato) const {
PRec p = Cerca(n);

if (!p)
return false;

coniugato = (p—>el.coniuge != 0);
return true;

}

unsigned int AgenziaMatrimoniale :: NumeroSposi() const {

SX. Soluzioni degli altri esercizi 134

unsigned int count = 0;
PRec p = first;

while (p) {
if (p—el.coniuge != 0)
count--;
p = p—>succ;

return count;

}

unsigned int AgenziaMatrimoniale :: NumeroCoppie() const {
return NumeroSposi() / 2;
}

void AgenziaMatrimoniale :: Svuota() {
while (first) {
PRec tbd = first ;
first = first —>succ;
delete tbd;
}
}

void AgenziaMatrimoniale ::Stampa() const {
PRec p = first;
while (p) {
cout << p—>el.n << "_(";
if (p—el.maschio)
cout << 'M’;
else
cout << 'F’;
cout << ");";

if (p—>el.coniuge)
cout << "_coniuge:_ " << p—>el.coniuge-—>n << ".";

cout << endl;

p = p—>succ;
}
}

void stampa menu() {
cout << "1:_AggiungiPersona.\n";
cout << "2:_Sposa.\n";
cout << "3:_Coniugato.\n";
cout << "4:_NumeroSposi.\n";
cout << "5:_NumeroCoppie.\n";
cout << "6:_Svuota.\n";
cout << "7:_Stampa.\n";
cout << "8:_Esci.\n";

}

void AggiungiPersona (AgenziaMatrimoniale& am);
void Sposa(AgenziaMatrimoniale& am);

void Coniugato (AgenziaMatrimoniale& am);

void NumeroSposi(AgenziaMatrimoniale& am);
void NumeroCoppie(AgenziaMatrimoniale& am);
void Svuota(AgenziaMatrimoniale& am);

void Stampa(AgenziaMatrimoniale& am);

SX. Soluzioni degli altri esercizi

135

int main ()

{

AgenziaMatrimoniale am;

int scelta;
do {
stampa_menu();
cin >> scelta;
switch (scelta) {
case 1:
AggiungiPersona (am);
break ;
case 2:
Sposa(am);
break ;
case 3:
Coniugato (am);
break ;
case 4:
NumeroSposi(am);
break ;
case b:
NumeroCoppie(am);
break ;
case 6:
Svuota(am);
break ;
case T:
Stampa (am) ;
break ;
case 8:
break;
default:
cout << "Scelta_non_valida.\n";
break ;

} while (scelta != 8);

return 0;

}

void AggiungiPersona (AgenziaMatrimoniale& am) {

Nome n;

cout << "Specificare_il _nome:_";

cin >> n;

char sesso;

do {
cout << "Specificare_il_sesso_ (M, _F):_";
cin >> sesso;

} while ((sesso != "M’) && (sesso != 'm’) && (sesso !=

7Fa)

&& (sesso !=

bool maschio = (sesso = M’ || sesso == ’'m’);
if (am.AggiungiPersona (n, maschio))

cout << "Persona_aggiunta.\n";
else

cout << "Persona_non_aggiunta.\n";

}

void Sposa(AgenziaMatrimoniale& am) {
Nome nl, n2;

)

SX. Soluzioni degli altri esercizi 136

cout << "Inserire_primo_nome:_";
cin >> nl;

cout << "Inserire_secondo_nome:_";
cin >> n2;

if (am.Sposa(nl, n2))
cout << "Matrimonio_registrato.\n";
else
cout << "Matrimonio_non_registrato.\n";
}

void Coniugato (AgenziaMatrimoniale& am) {
Nome n;
bool coniugato ;
cout << "Inserisci_il _nome:_";
cin >> n;
if (!am.Coniugato(n, coniugato))
cout << "Persona_non_esistente.\n";
else
if (coniugato)
cout << n << "_ha_coniuge.\n";
else
cout << n << "_non_ha_coniuge.\n";

}

void NumeroSposi(AgenziaMatrimoniale& am) {
cout << "Il_numero_sposi_é_pari_a_" << am.NumeroSposi() << endl;

}

void NumeroCoppie(AgenziaMatrimoniale& am) {
cout << "Il_numero_coppie_é_pari_a_" << am.NumeroCoppie() << endl;

}

void Svuota(AgenziaMatrimoniale& am) {
am. Svuota ();
cout << "AgenziaMatrimoniale_svuotata.\n";

}

void Stampa(AgenziaMatrimoniale& am) {
am. Stampa () ;
cout << endl;

}

SX.9 Parco Pattini

Traccia a pag. 45
La struttura dati puo essere realizzata come una lista dinamica semplicemen-
te collegata in cui ogni elemento rappresenta lo stato di tutti i pattini di una
data taglia. La generica cella della struttura contiene dunque:

e taglia dei pattini;
e numero totale di pattini della taglia data;

e numero totale di pattini disponibili della taglia data.

SX. Soluzioni degli altri esercizi 137

firstD—>|44|1|1|—>|43|1|1|—>|42|2|1}]_

/ Numero pattini

Tagliadel pattini disponibili
Numero pattini
complessivo

Figura SX.1: La struttura che implementa il parco pattini.

A titolo esemplificativo si immagini che il parco pattini disponga di un
paio di pattini della taglia 44, di un paio della taglia 43 e di due paia della
taglia 42. Se uno delle due paia di pattini della taglia 42 risulta fittato, lo
stato della struttura ¢ mostrato in Figura SX.1.

Si noti come la struttura ammetta una gestione di tipo tabellare, dal
momento che la taglia dei pattini risulta essere unica per ogni cella, e quindi
assimilabile ad una chiave.

Di seguito si riporta il listato.

#include <iostream>

using namespace std ;

typedef unsigned int Taglia;

struct Pattini {
Taglia taglia;
unsigned int totali;
unsigned int disponibili;

s

struct Record;

typedef Records* PRec;

typedef struct Record {
Pattini pattini;
PRec succ;

s

class ParcoPattini {

private:

PRec first ;
unsigned int tot;
PRec GetRecordByTaglia(Taglia t) const;

ParcoPattini(const ParcoPattini&); //inibisce la copia mediatne costr.
ParcoPattini& operator=(const ParcoPattini&); //inibisce [’ assegnazione

public:

ParcoPattini ();

“ParcoPattini ();

void AggiungiPattini(Taglia t);

void Svuota ();

unsigned int NumeroTotPattini() const;
bool Fitta (Taglia t);

SX. Soluzioni degli altri esercizi 138

unsigned int Disponibilita(Taglia t) const;
unsigned int NumeroPattini (Taglia t) const;
bool Restituzione(Taglia t);

void Stampa() const;

s
ParcoPattini:: ParcoPattini (): first (0), tot(0) {}
ParcoPattini::” ParcoPattini() {

Svuota ();

PRec ParcoPattini:: GetRecordByTaglia(Taglia t) const {

//Questo metodo permette la gestione della lista come tabella.

//Restituisce il punt. alla cella contenente i pattini della taglia richiesta,
//oppure 0 se tale cella non é nella lista.

PRec p = first;

while (p) {

if (p—>pattini.taglia = t) //trovato?
return p; //restituisce il puntatore alla cella della lista
else

p = p—>succ; //altrimenti avanza di una cella

}

return 0; //non trovato.

}

void ParcoPattini:: AggiungiPattini(Taglia t) {
PRec p = GetRecordByTaglia(t);

if (p) {
p—>pattini.totali++;
p—>pattini.disponibili+-+;

else {
PRec p = new Record;
p—>pattini.taglia = t;
p—>pattini.totali = 1;
p—>pattini.disponibili = 1;
p—>succ = first;
first = p;

}

tot++;

}

void ParcoPattini::Svuota() {
while (first) {
PRec tbd = first ;

first = first —succ;
delete tbd;

}

tot = 0;

}

unsigned int ParcoPattini:: NumeroTotPattini() const {
return tot;

}

SX. Soluzioni degli altri esercizi 139

bool ParcoPattini:: Fitta(Taglia t) {
PRec p = GetRecordByTaglia(t);

//ci sono pattini della taglia specificata, e se si, ce ne sono di disp.?
if (p & (p—>pattini.disponibili > 0)) {
p—>pattini.disponibili ——; //decrementa la disponibilita
return true;
}
else
return false;

}

unsigned int ParcoPattini:: Disponibilita(Taglia t) const {
PRec p = GetRecordByTaglia(t);

it (p)

return p—>pattini.disponibili;
else

return 0;

}

unsigned int ParcoPattini:: NumeroPattini (Taglia t) const {
PRec p = GetRecordByTaglia(t);

it (p)

return p—>pattini.totali;
else

return 0;

}

bool ParcoPattini:: Restituzione(Taglia t) {
PRec p = GetRecordByTaglia(t);

//ci sono pattini della taglia specif., e se si, ce ne sono di fittati?
if (p & (p—>pattini.disponibili < p—>pattini.totali)) {
p—>pattini.disponibili+-+;
return true;
}
else
return false;

}

void ParcoPattini::Stampa() const {
PRec p = first;

while (p) {
cout << "Taglia_" << p—>pattini.taglia << ":_";
cout << "Totale:_ " << p—>pattini.totali << "_";
cout << "Fittati:_" << p—>pattini.totali — p—>pattini.disponibili

<< " A\n";

p = p—>succ;

}

}

void AggiungiPattini(ParcoPattini& p);
void Svuota(ParcoPattini& p);

void NumeroTotPattini (ParcoPattini& p);
void Fitta (ParcoPattini& p);

void Disponibilita(ParcoPattini& p);
void NumeroPattini (ParcoPattini& p);
void Restituzione(ParcoPattini& p);
void Stampa(ParcoPattini& p);

SX. Soluzioni degli altri esercizi

140

void stampa_menu() {

cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout

}

int main()

{

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

ll\n” .

)
"1:_AggiungiPattini.\n";
"2:_Svuota.\n";

"3:_NumeroTotPattini.\n";

"4:_Fitta.\n";
"5:_Disponibilita.\n";
"6:_NumeroPattini.\n";
"7:_Restituzione.\n";
"8:_Stampa.\n";
"9:_Esci.\n";
"Scelta:_";

ParcoPattini parco;

int
do {

scelta ;

stampa_menu();
cin >> scelta;
switch (scelta) {

case 1:

AggiungiPattini(parco);
break ;

case 2:

Svuota(parco);
break ;

case 3:

NumeroTotPattini (parco);
break ;

case 4:

Fitta (parco);
break ;

case 5:

Disponibilita (parco);
break ;

case 6:

NumeroPattini (parco);
break ;

case T:

Restituzione(parco);
break ;

case 8:

Stampa (parco);
break ;

case 9:

break ;

default:
cout << "Scelta_non_valida.\n";

break ;

} while (scelta != 9);

return 0;

}

void AggiungiPattini(ParcoPattini& p)

Taglia t;

SX. Soluzioni degli altri esercizi 141

cout << "Inserire_la_taglia:_";

cin >> t;

p.AggiungiPattini(t);

cout << "Pattini_aggiunti_al_parco.\n";

}

void Svuota(ParcoPattini& p) {
p.Svuota ();
cout << "Parco_svuotato.\n";

}

void NumeroTotPattini (ParcoPattini& p) {
cout << "Il_parco_pattini_contiene_ " << p.NumeroTotPattini()
<< "_paia_di_pattini_in_totale.\n";
}

void Fitta (ParcoPattini& p) {
Taglia t;

cout << "Inserire_la_taglia:_";
cin >> t;
if (p.Fitta(t))
cout << "Pattini_fittati.\n";
else
cout << "Pattini_non_disponibili.\n";
}

void Disponibilita (ParcoPattini& p) {
Taglia t;

cout << "lInserire_la_taglia:_";
cin >> t;
cout << "Disponibilita’_taglia_ " << t << ":_" << p.Disponibilita(t)
<< endl;
}

void NumeroPattini (ParcoPattini& p) {
Taglia t;

cout << "Inserire_la_taglia:_";
cin >> t;
cout << "Il_parco_contiene_" << p.NumeroPattini (t) <<
"_paia_di_pattini_di_taglia " << t << ".\n";
}

void Restituzione(ParcoPattini& p) {
Taglia t;

cout << "Inserire_la_taglia:_";
cin >> t;
if (p.Restituzione(t))
cout << "Pattini_restituiti.\n";
else
cout << "Errore._Pattini_non_fittati.\n";
}

void Stampa(ParcoPattini& p) {
p.Stampa();

SX. Soluzioni degli altri esercizi

142

SX.10 Timer

#include <iostream>
#include <time.h>

using namespace std ;
typedef int Time;

class Timer {
private:
Time startTime ;
Time stopTime ;
public:
Timer ();
void start (
void stop ()
void reset (
Time getTim

s

Timer :: Timer () {
reset ();

)
)

5
() conmst;

void Timer::start () {
startTime = time (0)
stopTime = 0;

}

void Timer::stop () {
stopTime = time (0);

}

void Timer::reset () {
startTime = 0;
stopTime = 0;

}

Time Timer::getTime() const {

)

if (startTime =— 0) //il timer é in stato di reset?

return 0;

if (stopTime == 0) //il timer ¢
return time (0) — startTime; //si
else
return stopTime — startTime; //no

}

int main()
{
Timer t;
char ch;

cout << "’s’_start\n";
cout << "’x’_stop\n";
cout << "’r’_reset\n";
cout << "’p’_show_timer\n";
cout << "’e’_exit\n";

)
)

Traccia a pag. 46

SX. Soluzioni degli altri esercizi 143

do {
cin >> ch;
switch (ch) {
case ’s’:
t.start ();
cout << "Timer_started.\n";
break ;
case ’'x’:

t.stop ();
cout << "Timer_stopped.\n";

break ;
case 'r’:

t.reset ();
cout << "Timer_reset.\n";
break ;
case ’'p’:
cout << "Timer_shows:_ " << t.getTime() << endl;
break ;

LIP BN

case ’e
break ;

default:
cout << "Invalid_command.\n";

} while (ch != ’e’);

return 0;

}

SX.11 Timer Avanzato

Traccia a pag. 47

Il primo dei requisiti aggiuntivi imposti dalla traccia suggerisce intuitivamen-

te che il timer ¢ una sorta di accumulatore che tiene memoria della durata

complessiva degli intervalli di tempo cronometrati fino ad un certo istante.

Infatti ’esecuzione di un nuovo conteggio fornisce un contributo che va a
sommarsi a tutti gli eventuali contributi precedenti.

Al fini dello svolgimento di questo esercizio, il valore corrente del cronome-

tro puo essere pertanto considerato come la composizione di due contributi:

e la somma di tutti gli intervalli di tempo cronometrati nel passato, cioé
compresi tra un segnale di START ed uno di STOP;

e |'eventuale contributo del conteggio corrente, se il timer é attivo.

E dunque possibile pensare al timer come una classe dotata di due membri
privati:

storedTime: contiene la somma di tutti i conteggi passati gia terminati;
questo membro va aggiornato al termine di ogni conteggio;

SX. Soluzioni degli altri esercizi 144

startTime: contiene l'istante di inizio dell’eventuale conteggio in corso; vale
0 se il timer é inattivo.

In questo modo, all’arrivo del messaggio GETTIME, ¢ sufficiente restituire
il valore del membro storedTime, aggiungendo eventualmente la differenza
tra 'istante attuale e l'istante startTime, se startTime ¢ diverso da zero
(cioé se ¢’é un conteggio in corso).

Dal momento che spesso sorge la necessita di valutare se ¢’é un conteggio
in corso oppure no, in questa implementazione lo svolgimento di tale servizio
é stato incapsulato nell’opportuno metodo privato

bool isRunning () const;

#include <iostream >
#include <time.h>

using namespace std ;
typedef int Time;

class Timer {
private:
Time storedTime;
Time startTime ;
bool isRunning() const { return (startTime != 0); };
public:
Timer ();
void start (
void stop ()
void reset (
Time getTim

s

Timer :: Timer () {
reset ();

)
)

H
() conmst;

void Timer::start () {
if (!isRunning())
startTime = time (0);

}

void Timer::stop () {
if (isRunning()) {

storedTime 4= time(0) — startTime; //accumula il tempo del cont. in corso
startTime = 0; //ferma il conteggio
}
}
void Timer::reset () {
storedTime = 0;
startTime = 0;
}

Time Timer::getTime() const {
Time t = storedTime;

SX. Soluzioni degli altri esercizi 145

if (isRunning())
t += time (0) — startTime; //aggiunge il contributo del cont. in corso

return t;

}

int main()

{
Timer t;
char ch;
cout << "’s’_start\n";
cout << "’x’_stop\n"
cout << "’r’_reset\n";
cout << "’p’_show_timer\n";
cout << "’e’_exit\n";
do {
cin >> chj
switch (ch) {
case ’s’:
t.start ();
cout << "Timer_started.\n";
break;
case ’'x’:
t.stop ();
cout << "Timer_stopped.\n";
break ;
case 'r’:
t.reset ();
cout << "Timer_reset.\n";
break ;
case 'p’:
cout << "Timer_shows:_" << t.getTime() << endl;
break ;
case ’e’:
break ;
default:
cout << "Invalid _command.\n";
} while (ch != ’e’);

return 0;

}

SX.12 Votazioni

Traccia a pag. 48

#include <iostream >
using namespace std ;

const int NMAX = 50;

typedef char Nome|[NMAX];

typedef unsigned int Codice; //un partito é per semplicita identificato
//da un codice di tipo intero.

SX. Soluzioni degli altri esercizi

146

struct Oggetto {
Codice id;
unsigned int voti;

s

struct Cella;
typedef Cellax PCella;

struct Cella {
Oggetto elem;
PCella succ;

s

class Votazioni {
private:
PCella first;
unsigned int numVoti;

PCella CercaPartito(Codice id) const;

public:
Votazioni();
“Votazioni();

unsigned int AggiungiVoto (Codice id);

void Svuota ();

unsigned int GetVotiPartito (Codice id) const;

unsigned int GetNumeroVoti ()
void GetSituazione () const;

s

Votazioni:: Votazioni(): first (0), numVoti(0) {

}

Votazioni::” Votazioni() {
Svuota ();
}

PCella Votazioni:: CercaPartito(Codice id) const {
//La struttura é gestibile con metodo tabellare: infatti il

//partito rappresenta una chiave per la
//Questo metodo restituisce il puntatore
//specificato in ingresso, 0 altrimenti.

PCella p = first;
bool trovato = false;

while ((p) && !trovato) {

if (p—elem.id = id)
trovato = true;
else

p = p—>succ;

}

tabella dei voti.

codice

alla cella avente id pari a quello

return p; //se trovato & wvero, p punta alla cella ricerc.,

}

unsigned int Votazioni:: AggiungiVoto (Codice id) {

numVoti++; //incremento il numero di

PCella p = CercaPartito(id);

if (p) {
p—elem.voti++;
return p—>elem.voti;

voti complessivi

altrim .

p € zero

SX. Soluzioni degli altri esercizi

147

} else {
PCella p = new Cella;
p—elem.id = id;
p—elem.voti = 1;
p—>succ = first ;
first = p;
return 1;

}

}

void Votazioni::Svuota() {
while(first) {
PCella tbd = first;

first = first —>succ;
delete tbd;

}

numVoti = 0;

}

unsigned int Votazioni:: GetVotiPartito (Codice id) const {

PCella p = CercaPartito(id);

it (p)

return p—elem.voti;
else

return 0;

}

unsigned int Votazioni::GetNumeroVoti() const {

return numVoti;

}

void Votazioni:: GetSituazione () const {

PCella p = first;

while (p) {

cout << "Partito_" << p—>elem.id << ":_voti_" << "_." << p—>elem.voti;
cout << "_(" << (float)p—>elem.voti/numVotix100 << "%)" << endl;

p = p—>succ;
}
}

void AggiungiVoto(Votazioni& v);
void Svuota(Votazioni& v);

void GetVotiPartito (Votazioni& v);

void GetNumeroVoti(Votazioni& v);
void GetSituazione (Votazioni& v);

void stampa_ menu() {
cout << "1:_Aggiungi_voto.\n";
cout << "2:_Svuota.\n";
cout << "3:_Voti_partito.\n";
cout << "4:_Numero_voti.\n";
cout << "5:_Situazione.\n";
cout << "6:_Esci.\n";

}

int main()

{

Votazioni v;

SX. Soluzioni degli altri esercizi

148

}

void AggiungiVoto (Votazioni& v) {

}

void Svuota(Votazioni& v) {

}

void GetVotiPartito (Votazioni& v) {

}

void GetNumeroVoti(Votazioni& v) {

}

void GetSituazione (Votazioni& v) {

}

int scelta;
do {
stampa_menu();
cin >> scelta;
switch (scelta) {
case 1:
AggiungiVoto (v);
break ;
case 2:
Svuota(v);
break;
case 3:
GetVotiPartito (v);
break;
case 4:
GetNumeroVoti(v);
break;
case 5:
GetSituazione (v);
break ;
case 6:
break ;
default:

cout << "Scelta_non_valida.\n";

break ;
} while (scelta != 6);

return 0;

Codice id;

cout << "Indicare_il_partito:_";

cin >> id;

cout << "Voto_Aggiunto._Ora_il_partito_" << id << "_ha_voti_ " <<

v.Svuota ();

cout << "Struttura_svuotata." << endl;

Codice id;

cout << "Indicare_il_partito:_";

cin >> id;

v.AggiungiVoto (id) << ".\n";

cout << "Il_partito_" << id << "_ha_ottenuto_voti_ " <<

v.GetVotiPartito (id) << ".\n";

cout << "I_voti_complessivi_sono:_" << v.GetNumeroVoti() << endl;

v.GetSituazione ();

Appendice A

GNU Free Documentation License

Version 1.2, November 2002
Copyright (©2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom to
copy and redistribute it, with or without modifying it, either commercially or noncommer-
cially. Secondarily, this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications made by others.

This License is a kind of copyleft, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals provi-
ding the same freedoms that the software does. But this License is not limited to software
manuals; it can be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

A.1 Applicability and Definitions

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The Document, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as you. You

149

A. GNU Free Documentation License 150

accept the license if you copy, modify or distribute the work in a way requiring permission
under copyright law.

A Modified Version of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A Secondary Section is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The Invariant Sections are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The Cover Texts are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A Transparent copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for re-
vising the document straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety
of formats suitable for input to text formatters. A copy made in an otherwise Transpa-
rent file format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not Transparent is
called Opaque.

Examples of suitable formats for Transparent copies include plain ASCII without mar-
kup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available
DTD, and standard-conforming simple HTML, PostScript or PDF designed for human
modification. Examples of transparent image formats include PNG, XCF and JPG. Opa-
que formats include proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools are not gene-
rally available, and the machine-generated HTML, PostScript or PDF produced by some
word processors for output purposes only.

The Title Page means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, Title Page means
the text near the most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

A section Entitled XYZ means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such as
Acknowledgements, Dedications, Endorsements, or History.) To Preserve the

A. GNU Free Documentation License 151

Title of such a section when you modify the Document means that it remains a section
Entitled XYZ according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

A.2 Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you di-
stribute a large enough number of copies you must also follow the conditions in section
3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

A.3 Copying in Quantity

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover.
Both covers must also clearly and legibly identify you as the publisher of these copies.
The front cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use
the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

A. GNU Free Documentation License 152

A.4 Modifications

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled History, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled History in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
History section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled Acknowledgements or Dedications, Preserve the Title of
the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

A. GNU Free Documentation License 153

M. Delete any section Entitled Endorsements. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled Endorsements or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their titles
to the list of Invariant Sections in the Modified Version’s license notice. These titles must
be distinct from any other section titles.

You may add a section Entitled Endorsements, provided it contains nothing but en-
dorsements of your Modified Version by various parties—for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of
up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

A.5 Combining Documents

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in
the combination all of the Invariant Sections of all of the original documents, unmodified,
and list them all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled History in the various
original documents, forming one section Entitled History; likewise combine any sections
Entitled Acknowledgements, and any sections Entitled Dedications. You must delete all
sections Entitled Endorsements.

A. GNU Free Documentation License 154

A.6 Collection of Documents

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents
with a single copy that is included in the collection, provided that you follow the rules of
this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it indivi-
dually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of that
document.

A.7 Aggregation with Independent Works

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
aggregate if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

A.8 Translation

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled Acknowledgements, Dedications, or History,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

A.9 Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.

A. GNU Free Documentation License 155

However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

A.10 Future revisions of this license

The Free Software Foundation may publish new, revised versions of the GNU Free Do-
cumentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License or any later version applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright ©YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled GNU
Free Documentation License.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
with...Texts. line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend relea-
sing these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Bibliografia

[1]
2]
3]

4]
[5]

|6]
7]

18]
19]

[10]

[11]

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, special
edition, 2000.

Bruce Eckel. Thinking in C++, Volume 1: Introduction to Standard C++. Prentice
Hall, 27? edition, 2000. Liberamente scaricabile da http://www.bruceeckel.com.
Disponibile anche in versione italiana edita da Apogeo.

Carlo Savy. Da C++ ad UML: guida alla progettazione. Mc Graw Hill, 2000.
SGI. C++ Standard Template Library (STL). http://wuw.sgi.com/tech/stl.

Scott Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and
Designs. Addison-Wesley, 37¢ edition, 2005.

GCC. GNU/GCC, the GNU compiler collection. http://gcc.gnu.org.

ISO/IEC. International Standard for C++. International Organization for
Standardization (ISO), 25! edition, 2003. http://www.ansi.org.

Bloodshed Software. Dev-C++-. http://www.bloodshed.net/devcpp.html.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: FElements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

Scott Meyers. More Effective C++: 35 New Ways to Improve Your Programs and
Designs. Addison-Wesley, 1995.

Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley, 2001.

156

